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~

Three general approaches were used to investigate the
problem of horizontal stress measurement in cohesionless
soil: theoretical solutions, finite element modeling and
laboratory testing. The best theoretical solution to repre-
sent a soil stress cell measuring lateral stress is that for
a rigid ellipsoidal inclusion in an infinite, elastic,
homogeneous, isotropic material. Finite element modeling of
the Cornell Stress Cell using three-dimensional elements
allowed the soil to be represented as a cross-anisotropic
material which was not possible with the theoretical solu-
tion. Laboratory testing included air and soil calibrations
of the stress cell, determination of the coefficient of
horizontal soil stress at rest and constant volume direct
shear tests

GThe results of this study show that lateral stress

measurements can be performe. successfully with soil stress
cells but the behavior of the cells is different from that
of a cell oriented to measure vertical stress.pg

The use of soil stress cells to measure successfully
the increases in lateral stress from dilation of dense sand
during shear was demonstrated. This allowed the interpre-
tation of the stress cell response during pullout tests of
drilled shafts in dense sand conducted at Cornell. The
pullout resistance of shafts in dense sand, prepared by
vibration, was determined to be a function of the initial
void ratio of the soil. The implication is that high
horizontal stresses are not present in dense sands that have
been prepared by vibration.
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CHAPTER 1

INTRODUCTION

The purpose of this study is to determine a satis-
factory method for the measurement and interpretation of
lateral stresses in cohesionless soil in the laboratory
environment. The instrument used throughout is a soil

stress cell of the deflecting diaphragm type designed and

constructed at Cornell University and known as the Cornell

Stress Cell.

S \‘ Soil stress cells serve several functions including:

S validation of theory, monitoring performance and warning of

_ change in behavior of a structure. Stress cells have been

ﬁi used since the turn of the century to measure stresses

against structures, abutments and tunnel linings; beneath

foundations and pavements; in earth dams and embankments and
L to measure the dynamic stresses from traffic, compaction

Fl equipment and explosions. The performance of the stress

cells in soil has been the subject of research and the topic

of discussion for decades as is evident from the volume and

,‘."-'-.l
z N

E; variety of reports on the subject in the literature. Their
Ef use has met with mixed success and they have remained poorly
E; understood among the practicing profession.

t The performance of stress cells in soil is a function
b? of the type of soil in which they are placed. Cells in

H cohesive material generally have much better performance
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than the cells in granular material as noted from the
P following quotations from the literature on soil stress
e < cells:
‘ "...the question has been raised as to the accuracy of
this method (Goldbeck cells) of measuring pressures,

II particularly in granular and highly compacted mater-
Lo ials." (Seaquist, 1934)

k; "It was determined that the performance in the clay

b soil was very similar to that in air, but that in sand

ji the cell behavior was erratic." (McMahon and Yoder,
1960)

32 "The measurement of pressures in clay fills is likely
i to present far less difficulty than similar measure-
T ments in sands and gravels." (Trollope and Lee, 1961)

The orientation of stress cells in the soil also has an
effect on their performance. Cells have usually been
oriented to measure vertical stress in free field conditions
or lateral stresses on retaining structures. When cells
have been used to measure lateral stress in free field

conditions they have met with mixed success.

", ..in some field installations of stress meters,
faulty results had been obtained. 1In general, the
trouble was mostly with meters oriented to measure
stress in a direction other than the major pricipal
one." (Carlson, 1978)

""Both theory and experience have shown that the ratio
between diameter and thickness must be greater than
about five if the cell is installed for the purpose of
measuring vertical pressure on a horizontal plane
within a £ill such as a dam. The same cell would lead
to erroneous results if used to measure the horizontal

4 pressure against a vertical plane, because the long

> vertical dimension of the cell would resist the verti-
- cal strain in the adjacent soil and radically change

; the state of stress.'" (Terzaghi and Peck, 1967)
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Because of the difficulty experienced in the use of

stress cells in granular material and the measurement of
lateral stresses in particular, it was decided that this
represented a suitable research topic. Specifically, the
problem of lateral stress measurements in dense granular
soil had been encountered by Stewart and Kulhawy (1981)
during tests on the pullout resistance of concrete shafts in
sand. In these tests, the lateral stress determined from
the failure load on the shaft was an order of magnitude
higher than the in situ stresses measured with the stress
éé} cells. Stewart and Kulhawy suggested possible causes of
this error including stress induced anisotropy and the

problem of vibratory compaction.

This study then started as an investigation into the
problems of Cornell Stress Cells in measuring satisfactorily
the lateral stress in dense sand. Three general approaches

~~ were taken in an effort to solve the problem: theoretical
studies of stress cells, computer modeling of stress cells

- and laboratory testing and calibration.

¢ Theoretical methods for representing stress cells in

- soil were evaluated to determine the effect of the soil

E. parameters on the stress cell response. The best model

¢ found was that of a rigid ellipsoid embedded in an elastic,

homogeneous and isotropic infinite solid by Askegaard

3 . (1963). His theoretical solution could be rotated to

represent a cell measuring lateral stresses with good

T-r..
e
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results. The limiting factor in the solution was the use of
isotropic soil conditions since the anisotropic properties
of the soil were suspected of at least partially creating
the problem encountered by Stewart and Kulhawy. The theo-
retical modeling of stress cell performance is discussed in
Chapter 3.

Computer modeling of the stress cell was performed by
using a three-dimensional finite element model which in-
cludes the anisotropic soil properties. A three-dimensional
model was necessary to represent a cylindrical stress cell
in a vertical plane. All previous finite element simula-
tions were axisymmetical to model a stress cell in a horizon-
tal plane. The finite element modeling is covered in Chapter
4.

Laboratory testing included the air and soil calibra-
tion of the stress cells under a variety of soil and stress
conditions. During the air calibration phase, a time effect
on the stress cell was discovered and had to be eliminated
before proceeding. The time effect and its elimination is
discussed in Chapter 6. Other laboratory tests included the
determination of the lateral stress ratio for conditions of
zero lateral strain in filter sand and constant volume
direct shear tests. The procedures and equipment are
described in Chapter 5, the test results included in the
appendix and the test results summarized in Chapter 7.

Before beginning the investigation it was necessary to
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do a literature search for the use of stress cells to

- measure lateral stress. Chapter 2 briefly summarizes
L JPLS | |
e previous attempts to use stress cells for this purpose.

Several good summary papers on the general topic of stress
cells are available, and they are referenced in this work to
provide the requisite background for a treatment of lateral

stress measurement.
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CHAPTER 2

REVIEW OF HORIZONTAL STRESS MEASUREMENTS

WITH STRESS CELLS

Among the very first applications of soil stress cells
were measurements of horizontal stress. Perhaps the major
driving force behind the development of soil stress cells
was to determine the horizontal stresses and their distri-
bution bekind retaining structures. As a result of this
emphasis, most applications for soil stress cells measuring
lateral stresses are for boundary cells and only a fraction
of the applications are for free field stresses. Nearly all
the theoretical solutions applied to soil stress cells are
based on models in which the cell is oriented to measure
vertical stress as discussed in Chapter 3. Soil calibration
of stress cells in the laboratory has usually been done for
cells oriented only to measure vertical stress and the
results were assumed to apply to cells measuring horizontal
stress as well.

For all of the above reasons, it was necessary to
review the literature on soil stress cells and determine
what work had actually been done for stress cells measuring
horizontal stress in free field stress conditions. This
chapter is a summary of the literature found on the measure-

ment of horizontal soil stresses with stress cells.
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2.1 BOUNDARY STRESS

The earliest uses of soil stress cells to measure
horizontal stresses were to determine the magnitude and
distribution of lateral stress on retaining structures.

These boundary cells were installed on or flush with the

structure in an effort to determine the lateral stress.
Mann (1913) used a hydraulic boundary cell read by the

change in level in a capillary tube to measure the lateral

T

stress on sand in a Ko condition. His small scale tests met

with limited success because of the effects of friction on

'y the sides of the soil retaining box. Hummel and Finnan
(1921) used a carbon pile cell to measure lateral boundary

stresses against a small wooden structure with variations in

the slope of the sand backfill. The measured stresses
followed the same trend as the theoretical solutions but
were not precise enough to draw any conclusions.

- McNary (1925) reports on the field use of Goldbeck

pneumatic earth pressure cells to measure the stress dis-
tribution behind two bridge abutments. The l6th Street
4 Bridge abutment in Washington, D.C. was backfilled with

compacted clay-sand-gravel and the Bennings Bridge abutment,

?' also in Washington, D.C., was backfilled with coarse random
4 fill. The results of both tests were quite good and demon-
&- strated the value of good field measurements. Goldbeck

- (1938) reported the results of the same two bridge abutments
g as McMNary (1925), as well as the results of Coldbeck cells
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installed on the abutment of the Skellet Fork Bridge in Il-
linois. 1In this application the total earth pressures were
found to vary significantly with the variation in the water
level and the location of weep holes in the abutment wall.

Sowers, et al. (1957) used deflecting diaphragm stress
cells on a rigid concrete retaining wall to measure the
residual lateral stress after compaction of both sand and
clay backfill. The lateral stresses in the sand increased
with compaction effort but were independent of water content
and time after compaction. In the clay backfill the lateral
stresses increased with compaction effort but decreased with
increasing moisture and decreased with time after compac-
tion.

Rowe and Peaker (1965) used a sophisticated movable
retaining wall instrumented with eighteen hydraulic soil
stress cells to determine the passive stress in both loose
and dense sand. By integrating the stress cell results over
the area of the wall, the resulting force was found to be
within five percent of the applied horizontal load for
excellent results. Kruse (1965) reports on the use of
Carlson soil stress cells installed on the concrete core
block of Oroville Dam to evaluate the performance of a clay
zone used to distribute stresses. The trends of the results
were correct but the magnitudes were quite erratic.

Scott and Kilgor (1967) installed ten Maihak vibrating

wire stress cells on the concrete spillway of Wildwood Dam,
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Ontario, Canada to monitor the change in soil stress with
consolidation of the clay core. The results were quite
erratic and affected by the location of the stress cells
between counterforts of the spillway.

Jones (1973) used British Research Station stress cells
to measure the lateral stress on cantilever retaining walls
and bridge abutments. The measugéd‘SCressgs were higher
than that predicted from earth pressure theor&‘but\patched
very well with the results from finite element analyse§§

Carder, Pocock and Murray (1977) used three different B -
types of soil stress cells on a two meter square movable
retaining wall to measure the lateral stress in sand. The

instruments included hydraulic, pneumatic and strain gaged

deflecting diaphragm cells. Stresses were measured after
compaction and for both active and passive conditions in the
soil with good results.

In addition to the relatively rigid structures just
mentioned, boundary cells have been installed on more
flexible sheet piles to measure the lateral stress as well.
Pien (1958), Johannessen (1958), Kiaernsli (1958) and Bauer
(1974) all report on the success of using a vibrating wire
soil stress cell installed on a sheet pile prior to driving
to measure the lateral stress in soft silty clay. The sheet
piles were used for excavation support for the Oslo subway
construction and the measurements of the lateral stresses

contributed immensely to the understanding of stresses on
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flexible retaining structures. Shelson (1958) reports on
the use of soil stress cells on sheet piles used for a
cofferdam. The cells were placed to determine the lateral
stress from the soil used to fill the cellular cofferdam for
the Saint Lawrence Power Project.

Rowe and Biggs (1961) determined the stress‘distri-
bution on a braced sheet pile wall using soil stress cells:
The integration of the stress cell results were within five
percent of the applied load on the wall. Mead (1963)
installed ten Goldbeck cells on sheet piles used as a
tieback wall to determine the lateral stress distribution.
His results for stress in the general fill were inconsistent
and of little value. Scott, Wilson and Bauer (1972) had
excellent results from the thirteen Geonor vibrating wire
stress cells placed on sheet piles in fine dense sand

despite the large deformations of the sheet piles.

Rigid retaining structures and flexible sheet piles
have not been the only applications for boundary soil stress
cells measuring lateral stress. Agarwal and Venkatesan
(1965) placed stress cells in precast concrete piles to
measure the lateral stresses on the pile. Although there
were mechanical and electrical problems with their instru-
ments, the results paralleled the expected stresses very
well. Kenney (1967) used vibrating wire stress cells in-
stalled on a hollow steel pipe to measure the in situ

lateral stress in quick clays with good results. This was
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the first of what later developed into self-boring pressure-
meters. Uff (1969) installed soil stress cells through
slurry during construction of a concrete diaphragm wall.
The results were erratic but the average values for all
cells were very good.

Kasch, et al. (1977) used soil stress cells to measure
the lateral stress on a drilled shaft. There was consider-
able difficulty in keeping the cells in contact with the

soil throughout the test.

2.2 FREE FIELD STRESS

All of the works cited so far have been for the deter-
mination of lateral stress on a boundary. The determination
of free field stresses by the use of soil stress cells is a
more difficult problem. The following references are those
in which the lateral stresses for a free field stress
condition were measured. The disturbance of the free field
stress by a soil stress cell is inevitable unless the
stress-strain properties of the cell exactly match the
stress-strain properties of the soil, which is highly
unlikely.

Foster and Fergus (1951) reported on extensive tests
performed by the Waterways Experiment Station on clayey
silt. Stress cells at various orientations were used to
evaluate the distribution of stress in the soil caused by

surface loads. The measured stresses compared very well
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with theoretical stresses for an elastic material with a

Poisson's ratio of 0.5. Turnbull, Maxwell and Ahlvin (1961)
summarize the results of Foster and Fergus (1951) as well as
report on the results of additional tests performed on a
sandy soil. The measured stresses in the sand compared well
with the theoretical stress in an elastic material with a
Poisson's ratio of O0.3.

McMahon and Yoder (1960) calibrated strain gaged
deflecting diaphragm stress cells in clay and sand with
excellent results for the cells in clay but with erratic
results for the same cells in sand, independent of their
orientation.

Buck (1961) used Redshaw stress cells oriented both
vertically and horizontally in a nine inch (229 mm) diawat: =
triaxial sample of sand. He found that the registration of
the cells depended on their orientation with a vertical
registration value of 1.08 and a lateral registration value
of 0.91. Buck concluded that the difference in the reg-
istration values was caused by the cross-sensitivity of the
cells.

Mackey (1966) used a unique cubic stress cell to
measure both vertical and lateral soil stresses in dense
sand. His cell was useful for measuring stresses only up to
a maximum value of 1.0 psi (6.89 kN/mz).

Reports by Kennard, Penman and Vaughan (1967) and by

Thomas and Ward (1969) hoth describe the application of
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vibrating wire soil stress cells in Balderhead Dam. This
was the first use of stress cells in a dam in Britain and
gave excellent results for the vertical and lateral stresses
in the clay core of the dam.

Abbott, et al. (1967) calibrated rigid spool stress
cells in Ottawa sand under K, conditions with applied
vertical stresses up to 800 psi (5.52 MN/mZ). The measured
horizontal stress was compared to the theoretical K stress
determined for Ottawa sand by Hendron (1963). The trend of
the data was correct but with large differences in the
magnitude. The differences were thought to be caused by
placement difficulties for any orientation of the stress
cell other than vertical.

Krivoritov (1969) measured lateral stress in a soil
calibration chamber of sand subjected to surface plate
loads. The measured lateral stresses were erratic, espe-
cially as the plate load approaches the bearing capacity of
the soil.

Penman and Mitchell (1970) obtained good results from
the vibrating wire stress cells installed to measure the
lateral stresses in the clay core of Scammonden Dam.

Krizek, et al. (1974) reported detailed soil calibra-
tion, finite element modeling and field testing performance
for stress cells. Unfortunately their work on lateral
stress measurements was limited to a single cell in the soil

calibration chamber which gave a coefficient of lateral
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earth pressure consistent with the theoretical value.

Massarsch, et al. (1975) inserted a Gloetzl earth
pressure cell into soft clay to measure the in place lateral
stress. Although it took several days for the excess pore
pressures generated by the disturbance to dissipate before
accurate measurements could be made, the results were better
for the stress cell than from those determined by hydraulic
fracturing techniques.

Tavenas, et al. (1975) did a comparative study between
the measured lateral stresses obtained from hydraulic
fracturing, pressuremeters and stress cells. They recom-
mended the use of stress cells in the soft sensitive clay
used in the study to obtain the best results. The pres-
suremeter used was not the self-boring type which had an
adverse impact on the results for that instrument and the
results could have been improved by using the self-boring
type of pressuremeter.

Weiler and Kulhawy (1978) calibrated a single Cornell
Stress Cell measuring lateral stress in loose filter sand
for a triaxial extension test. The response of the cell was
cornsistent with the response for the same cell oriented
vertically and no distinction between vertical and horizon-
tal cell performance was noted.

Stewart and Kulhawy (1981) made extensive use of the
Cornell Stress Cells to measure lateral stresses in large

scale pullout tests of drilled shafts in filter sand.
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The results for the soil stress cells measuring vertical
stresses and for the stress cells measuring lateral stresses
in loose and medium dense sand were consistent with measured

loads on the shaft. The stress cells measuring lateral

stresses in dense sand were as much as an order of magnitude
lower than the stress determined from the pullout resistance
of the shafts. This apparently poor performance for the
Cornell Stress Cells in dense filter sand was the single
most important factor in pursuing research on the determina-
tion of lateral stress by soil stress cells.

Stress cells have also been used in materials other
than soil, such as concrete. Loh (1954) installed stress
cells in concrete cylinders and found the cells oriented to
measure lateral stresses were responding to uniaxial stress
because of the cross-sensitivity of the cells. Carlson
(1978) reports on stress cells installed in large, 30 inch
(762 mm) diameter, cylindrical samples loaded in uniaxial (K
= 0), triaxial (K = 0.22) and hydrostatic (K = 1.0) stress
conditions. The cells measuring lateral stresses gave
results with less than ten percent error for all stress
conditions.

The determination of free field stresses subjected to
dynamic loads have also been studied. Durelli and Riley
(1961) embedded stress cells in urethane rubber cylinders
and in cylinders of clay subjected to dynamic stresses using

a ballistic pendulum. The cylinders were loaded in uniaxial
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compression but with the stress cells at varying orienta-
tions. The measured stresses were consistent for all
orientations of the cells.

Bernhard (1961) applied dynamic loads through a plate
on sand and measured the stress in the sand. The stresses
applied were only up to a magnitude of 0.5 psi (3.45 kN/mz).
His results matched the expected values very well.

Ingram (1965) did static and dynamic soil calibration
tests in a KO soil chamber with applied vertical stresses of
500 psi (3.45 MN/mz). The measured horizontal stress in the
dry sand decreased with depth of burial because of excessive
sidewall friction in the chamber.

Sparrow and Tory (1966) varied the pulse times for
loads on a typical road subgrade of silty clay known as
Kueper Marl. Both vertical and horizontal stresses were
measured but because of the high cross-sensitivity of their
soil stress cells, the horizontal stress measurements were
invalid. Brown and Pell (1967) continued these experiments
by applying the pulse load to a layered soil system. The
stresses agreed with theoretical predictions remarkably well
but the horizontal stresses agreed less well than the other
stresses. The cross-sensitivity was all but eliminated by
rearranging the strain gages on the deflecting diaphragm.

D'Appolonia, Whitman and D'Appolonia (1969) used
deflecting diaphragm stress cells to measure the stresses in

sand caused by vibratory rollers. These full scale tests
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measured the vertical and lateral stresses for variations in
- the frequency and number of passes of the rollers. The

E! lateral stress ratio, K, was found to increase with fre-
quency and number of passes to a maximum value of 2.0. The
cells performed satisfactorily for orientations both ver-

tically and horizontally.

2.3 CONCLUSIONS

A review of the stress cell literature has shown
several trends for cells oriented to measure lateral stres-
k;; ses. Those stress cells installed to measure the lateral
stress on a boundary such as retaining walls, bridge abut-
ments and sheet piles have generally performed well. The
best results were obtained when several measurements at the
same stress level are averaged together rather than relying
on the output of a single instrument. The successful

- performance of the boundary cells is independent of the soil

type and installations in both sand and clay have performed
well.
For stress cells used to determine the free field

stresses, the vertical stress measurements are consistently

Dl gl 20N i S, o A Bt ot I SE0 4N I

better than the lateral stress measurements. For cells
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installed in soft clay soils the measurement of lateral
stress is very good and agrees well with the theoretical
values. For applications in laboratory soil calibration

}l tests and field applications in the clay cores of earth dams
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and in clay subgrades for pavements, the stress cells

measuring lateral stresses have generally been excellent.
Soil stress cells used to measure lateral stresses in sand
have met with mixed success. The measured stresses as
compared to expected values have varied from good (Turnbull,
Maxwell and Ahlvin, 1961) to poor (McMahon and Yoder, 1960
and Stewart and Kulhawy, 1981).

The literature review for stress cell performance has
demonstrated the necessity of laboratory calibration of the
stress cells in the same material and under the same ex-
pected stress and boundary conditions as the field applica-
tion. Without this calibration before field use; the
stress cell output can only lead to confusion or misleading
conclusions.

This chapter concentrates on the use of stress cells to
measure lateral stress. Most laboratory calibration tests
on stress cells and all the stress cell theories have been
for cells oriented to measure vertical stress. Additional
information on the performance and theory of stress cells
can be obtained from the excellent review articles by Weiler

and Kulhawy (1978, 1982), Brown (1977) and Hvorslev (1976).




CHAPTER 3

STRESS CELL THEORY

One possible method to determine the response of soil
stress cells is to develop a theoretical solution. The
value of the theoretical solution comes from a general
closed-form solution to the problem in which the influence
of each parameter is explicitly stated. The theorétical
solution, if it can be obtained, would be the answer to the
problem and only some laboratory verification of the solu-
tion would be required. The real difficulty is obtaining a
theoretical solution in which the problem has not been over-
simplified so that an adequate representation of the problem
is obtained.

A stress cell in soil offers some real challenges for
obtaining a theoretical solution. The soil is generally
inelastic and anisotropic with a complex stress-strain-time-
environment relationship. The Cornell Stress Cell is a
nonhomogeneous disc consisting of titanium, silicone and
stainless steel with a deflecting diaphragm. Obtaining a
theoretical solution to such a complex problem is highly
unlikely but, if some simplifying assumptions can reduce the
problem to a manageable form, then a theoretical solution
might be useful. Even with the simplifying assumptions, a
closed-form solution could give indications of trends and

relative influence of the parameters on the response of the

19
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soil stress cell.

The first section of this chapter will briefly describe
previous attempts to obtain theoretical solutions for the
problem of stress cells in soil. This subject has been
covered in depth by other reporters and extensive use of
references will be done to avoid repeating their work.

Those readers not familiar with the methods described should
refer to the publications cited for additional information.

The second section of this chapter will describe in
detail the derivation of a theoretical solution for the
stress on the face of a rigid ellipsoid used to model a soil
stress cell. The ellipsoid can be oriented to represent a
stress cell measuring lateral stress as well as vertical
stress. This was the best closed-form solution that could
be found for representing soil stress cells and the resultis
obtained from it are compared to the finite element modeling
results in Chapter 4 and the laboratory test results in

Chapter 7.

3.1 THEORETICAL METHODS

Through the years, many researchers have tried to apply
theoretical solutions to the problem of soil stress cells.
This section will only provide an overview to the methods
and provide references for further information. There are
several excellent articles which summarize the use of soil

stress cells and their theoretical development. These
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articles include work by Weiler and Kulhawy (1978, 1982),
Brown (1977) and Hvorslev (1976), and are recommended for
obtaining a background in soil stress cells. The detailed
information on stress cell theory included in these four
articles will not be repeated here and the interested reader
is referred to them for details. The basic approaches for
modeling stress cells are: rigid boundary cells, indentation
theory, finite element modeling and rigid inclusions in an
elastic medium.

Several theoretical solutions exist for modeling a
stress cell placed on a rigid boundary. Terzaghi (1936,
1943) used a trap door analogy to obtain the stress on a
portion of a rigid boundary as it moved away from or toward
the soil. These results were used to determine the active
and passive resistance, respectively, with the soil arching
across the movable portion or the rigid boundary. McNulty
(1965) did some trap door testing and verified Terzaghi's
work. Kallstenius and Bergau (1956) analyzed the effect of
deflection shape for a circular stress cell on a rigid
boundary and compared a rigid piston cell to a deflecting
diaphragm cell. This method for modeling stress cell
performance does not include lateral stress effects between
cell and soil.

Indentation theory has been used by several researchers
in modeling soil stress cells. The most frequently refer-

enced work for indentation theory in stress cell literature
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was that done by Taylor (1945, 1947) for the United States
Army Engineer Waterways Experiment Station. Others who have
applied indentation theory include: Hast (1943), Coutinho
(1949) and Peattie and Sparrow (1954). The indentation
theory assumes a thin cylindrical stress cell with uniform
axial compressibility on a homogeneous, elastic, halfspace.
Boussinesq's (1885) solution for a surface load is applied
to obtain the stress cell response, neglecting the radial
compressibility of the disc, shear stresses, lateral stress
rotation and cross-sensitivity. The major conclusions from
this theory are: the cell response is proportional to the
aspect ratio of the cell and inversely proportional to
Poisson's ratio of the soil and the effect of soil/cell
stiffness becomes nearly constant when the stiffness of the
cell is greater than ten times the stiffness of the soil.
These were significant findings which have been used for
stress cell design ever since Taylor proposed them in 1945.
However the assumptions used in the indentation theory do
not apply for stress cells oriented to measure lateral
stresses.

Finite annular elements were used by Monfore (1950) to
modei a soil stress cell and Bates (1969) used finite
element methods to model stress cells. The results of these
and other applications of finite element modeling of soil
stress cells are included in Chapter 4. Although a very

powerful tool, the finite element method gives a solution to

......




= ERE R T
AR A PRI
RN At
. . AR
LI et h e s

-y
A

537

P————
RN P &

L et e i Sl Baie aaui Y

23

a single problem in which the material properties, applied
stresses and boundary conditions must by specified. To
determine the relative effect of a single parameter, several
solutions must be made while holding all the other param-
eters constant. The finite element method is a mathematical
procedure to obtain a single solution and is not a true
theoretical solution in that a closed-form solution is not
obtained.

The modeling of a soil stress cell as a solid inclusion
in an elastic material has met with some success. Theo-
retical solutions for the stress concentrations around
spherical and long cylindrical solid inclusions in an infin-
ite, homogeneous, isotropic elastic space were first derived
by Goodier (1933). Additional work on the solution of a
solid ellipsoidal inclusion was done by Edwards (1951) and
Eschelby (1957). Askegaard (1963) applied the solution
derived by Eschelby to a rigid oblate spheroidal inclusion
and showed that the aspect ratio of the inclusion and
Poisson's ratio of the soil have a significant effect on the
vertical stress on the face of the inclusion. Collins, et
al. (1972) derived the same conclusions from Edward's and
Eschelby's solutions, independently of Askegaard's work.

The experimental work done by Askegaard (1963), Collins, et
al. (1972) and the finite element modeling by Weiler and
Kulhawy (1978) all confirm the use of the theoretical

solution of a rigid ellipsoid to model a stress cell.




However, all the theoretical solutions and experimental
work were for ellipsoids oriented as if the cells they were
Rk modeling were measuring vertical stress. For conditions of

hydrostatic stress, the theoretical solution is the same for
ellipsoids oriented either vertically or horizontally. A

cell oriented to measure lateral stresses would respond

differently under any stress conditions other than hydro-

static as compared to the same cell oriented to measure
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vertical stress. The following section describes the
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results of the theoretical solution obtained for a rigid

ellipsoid oriented as if measuring lateral stress.

3.2 RIGID ELLIPSOIDAL INCLUSION

The theoretical solution for stress on a rigid ellip-

v

soid in an infinite, elastic, homogeneous, isotropic
material was used by Askegaard (1963) to model a disc-like
stress cell oriented to measure vertical stress. The best

ellipsoidal representation for a typical soil stress cell is

P

an oblate spheroid with the two long axes of the ellipsoid

PR

being equal. The ratio of the length of the short axis to

&
; the length of the long axes is the aspect ratio of the

E: oblate spheroid. The theoretical solution gave the stress
E] at the center on the face of the oblate spheroid which was
?— normalized by dividing it by the magnitude of the applied

E vertical stress. The theoretical results for the normalized
E‘ vertical stress are dependent on only three parameters: the
&




aspect ratio of the ellipsoid (a), Poisson's ratio of the
material (v) and the ratio of lateral to vertical applied

stress (K) as shown in Equation 3.1.

Sface _ 1-v [4a’(1+2K) + 4IK(v-a’-va?) - I(3+2K) |
Oyvert 1+ | 12(1-0%) (1-2v) - I1(3-4v(1-a2)) + 4a?)
Where 1= 20 [cos'la - a(l-az)%]
(1-a2y1:5
(3.1)
- The coefficient, I, is dependent only on the aspect ratio of

the ellipsoid and is a constant for a given value of the
m aspect ratio. The lateral stress ratio, K, can be varied

from zero for uniaxial stress through hydrostatic stress

Eﬁ with K = 1.0 and beyond. Poisson's ratio becomes very

E. :.;' important and the resuits of Equation 3.1 are discussed by
{ Askegaard (1963) and Weiler and Kulhawy (1978).

3

The results of Equation 3.1 are shown in Figure 3.1 for

Ca e o 3 it ol )
i [

the Ko condition of zero lateral strain. When the aspect
. ratio is zero, the results are a constant value of 1.00 over
- - '
9 the range of Poisson's ratio from zero to one half. As the
- . _ .
 é aspect ratio increases the deviation from the applied stress

increases dramatically for low values of Poisson's ratio, as
much as 223 percent for an aspect ratio of one. This means
{‘ 4 that an ellipsoid with a small aspect ratio (large width to

- thickness) has a negligible effect on the stress at the
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Figure 3.1 Ncrmalized Vertical Stress on a Rigid
Oblate Spheroid under K, Conditions.
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center of ;he face. The effect of aspect ratio on the
response of a stress cell measuring vertical stress was
recognized prior to Askegaard's (1963) work by Taylor (1945)
who quantified the effect of aspect ratio using indentation
theory. Soil stress cells have been generally designed to
have a small aspect ratio to avoid this large error.

Because of the success of representing the soil stress

cell oriented to measure vertical stresses by a rigid

ellipsoid, the theoretical solution for an ellipsoid ori-
‘ ented for lateral stress was desired. It was possible
L.

e ' v through a rotation of coordinates to obtain the stress on

the center of the face of the oblate spheroid oriented to

represent a stress cell measuring lateral stress. The
stress on the rigid ellipsoid was again normalized by the

applied vertical stress. The resulting lateral stress is:

9face - 1-v [%a2(1+2K) + 21(1+K)(v-a2—va2) - I(1+4K)
vert 14+ L 12(1-a®) (1-2v) - I(3-4v(1-a%)) + 4o’
(3.2)
4 with the coefficient, I, as defined in Equation 3.1.
L -
| For an aspect ratio of one, representing a sphere and
f> _ under hydrostatic stress conditions, K = 1.0, Equations 3.1
Ei and 3.2 give identical results as would be expected. For
{ the special case of zero lateral strain where K = Ko the
-
b




coefficient of lateral earth pressure at rest, the value of
K  can be expressed as a function of Poisson's ratio (See
Equation 4.11.). The results of Equation 3.2 for the K
condition are shown in Figure 3.2 for variation in the range
of Poisson's ratio from zero to one half and the range of
aspect ratio from zero to one. The theoretical lateral
stress ratio for free field conditions is also shown for
comparison. The results of Equation 3.2 do not match the
free field results for low values of Poisson's ratio but
merge to the free field values at Poisson's ratio of one
half. The differences between aspect ratios are small (less
than six percent of the range) compared to the differences
(as much as 39 percent) between the values of stress on the
rigid ellipsoid and the free field stress.

One conclusion drawn from Figure 3.2 is the insensi-
tivity to the variation in aspect raio for a rigid ellipsoid
oriented as if measuring lateral stress under conditions of
zero lateral strain. The stress on the face of the oblate
spheroid is significantly different than the free field
stress but relatively constant for variations in the aspect
ratio. This behavior is contrasted with the inclusion
oriented to measure vertical stress which is very sensitive
to the value of the aspect ratio. A stress cell designed to
measure vertical stress should be as thin as practical to
minimize the error in the measured stress. A stress cell

used to measure lateral stress has an error that is insen-
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Figure 3.2 Normalized Lateral Stress on a Rigid
Oblate Spheroid under K Conditions.
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sitive to the aspect ratio of the cell for conditions of
zero lateral strain.

Another conclusion that can be drawn from Figures 3.1
and 3.2 is about the effect of Poisson's ratio on the stress
on the face of the inclusion. The stress approaches the
free field stress for the Ko conditions as Poisson's ratio
approaches one half. This occurs whether the inclusion is
oriented vertically or horizontally and for any value of the
aspect ratio. This behavior would explain the successful
application of stress cells in saturated clays discussed in
Chapter 2. The value of Poisson's ratio for saturated clays
is nearly one half and the measured stress in this type of
soil has been found to be much closer to the expected free
field stress than for any other type of soil. The results
for the stress on a rigid ellipsoidal inclusion help to
explain why stress cells have performed well in soils with a

high value of Poisson's ratio such as saturated clays.

3.3 CONCLUSIONS

A review of the theoretical solutions for modeling soil
stress cells has shown the best theoretical model to be that
of a rigid ellipsoid. Askegaard's solution for a rigid
oblate spheroid in an infinite, elastic, homogeneous and
isotropic material has been transformed to allow the repre-
sentation of a stress cell measuring lateral stress as well

as vertical stress. The results show that for the Ko
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conditions of zero lateral strain, the measured lateral
stress is relatively insensitive to the aspect ratio of the
cell and very sensitive to changes in the Poisson's ratio of

the material.
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CHAPTER 4

FINITE ELEMENT MODELING OF STRESS CELLS

There are three general approaches to solve the problem
of stress cell response in soil: theoretical solutions,
laboratory testing and mathemetical mcdeling. This chapter
deals with the latter approach, mathematical modeling of
stress cells.

The first section covers previous attempts to model
stress cells. Common to all the earlier mathematical models
by other researchers was the use of axisymmetric models with
isotropic soil properties. One of the purposes of this
investigation was to determine the response of stress cells
measuring horizontal stress in cross-anisotropic soil. This
requires three-dimensional modeling and the use of aniso-
tropic soil properties.

Soil as a cross-anisotropic material is treated in the
second section. Cross-anisotropy is an improved model for
soil behavior in which the soil can be described by five
independent elastic parameters with any vertical axis being
an axis of symmetry. Most soils created in a sedimentary
environment exhibit the characteristics of cross-anisotropy.
The effect of cross-anisotropy on the response of stress
cells in finite element models is the desired result.

Four separate finite element models are used in the

analysis and are described in the third section. The four
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models are: axisymmetric models of a rigid ellipsoid, a
rigid disc and the Cornell Stress Cell, and a three-dimen-
sional model of the Cornell Stress Cell. The effects of
inclusion shape, soil modulus, cross-anisotropy, Poisson's
ratio and lateral stress ratio are investigated using these
four models. The results of the finite element analysis are
discussed in the fourth section by taking each model sep-
arately and comparing the results to other known solutions.
The fifth and final section of the chapter summarizes
the chapter and includes the conclusions reached during the

finite element modeling of the stress cell.

4.1 PREVIOUS MATHEMATICAL MODELS FOR STRESS CELLS

The earliest known attempt to model stress cell per-
formance mathematically was by Monfore (1950) who used
finite annular rings to determine the distribution of stress
across the face of an elastic disc. Monfore assumed that a
plane parallel to the face and through the center of a rigid
disc embedded in an elastic material would remain plane when
the elastic material was subject to a uniform uniaxial
stress normal to the rigid disc. [nis assumption allowed
him to use the center plane as a plane of symmetry and to
model only half the disc on the surface of an elastic half
space. Boussinesq's solution for surface loading on an
elastic half space was then applied to determine the load on

concentric annular rings necessary to keep the surface
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plane. The stresses from the load on each annular ring were
then superimposed to determine the stress distribution
across the face of the rigid disc. This pioneering work on
stress cells was limited by the use of a solid elastic disc
to model the stress cell and it ignored the effects of
lateral stress on the disc and shear stress on the center
plane.

The first use of the finite element method for modeling
stress cells was by Bates (1969) who did plane stress and
axisymmetric modeling of the SMRL, Spokane Mining Research
Laboratory, deflecting diaphragm strain gaged cell. The
results showed nearly constant overregistration in soft
soils and he recommended that cells be constructed to be
much stiffer than the soil they are embedded in. The major
principal stress was also applied laterally to the cell and
although the results clearly show the effect of lateral

stress rotation, it was not identified by Bates.

Both diaphragm and rigid spool cells were modeled as
¢ axisymmetric problems by Fossberg (1970) tc obtain the
i‘ stress distribution across the cell face. Radial tension in
} the soil elements near the edge of the cell was identified
for cells in uniaxial compression. Only cells measuring

vertical stress were modeled and although lateral stress

rotation was evident in the results, it was not identified
by Fossberg.

Forsyth and Jackura (197/4) modeled stress cells as a
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solid elastic disc using axisymmetric conditions with the

major principal stress both normal and parallel to the cell.
They investigated the effects of soft and stiff annular
rings as well as variations in the edge shape for a solid
disc-1like cell. They concluded that cell geometry is the
single most important physical property associated with
minimizing registration error and failed to recognize
lateral stress rotation and the effects of Poisson's ratio
on the registration values.

Krizek, et al. (1974) used the finite element method to
e model their soil calibration chamber to determine the

theoretical stress cell response. Their investigation

included variations in the stiffness and Poisson's ratio of
both the cell and the soil, as well as the boundary condi-
tions of their calibration chamber. All thirty-one of their
finite element solutions were for vertical stresses in

- axisymmetric models. The stress cell used was a fluid
filled deflecting diaphragm modeled as an elastic disc with
a stiffer outer ring. The results indicated only a small

deviation in the free field stress caused by a stress cell

i v S >

measuring vertical stress. Therefore they assumed little or

S

no disturbance in the free field stress for a stress cell

MAZAL AL Ak Sk o

measuring horizontal stress, although this was not modeled.
2 Audibert and Tavenas (1975) report on modeling pocket
-
- action on the response of a stress cell using a nonlinear
o
{ stress-dependent elastic model. The cell was modeled as a
4
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rigid disc in this axisymmetric problem. No mention of the
imposed lateral stress or lateral strain conditions were
given in their report.

A rigid piston boundary cell was modeled by Carder
(1976) using isotropic stress on an axisymmetric model. He
concluded that the amount of friction along the rigid
boundary was very important to the registration value of the
cell.

Weiler and Kulhawy (1978) modeled the Cornell Stress
Cell as a deflecting diaphragm cell with both soft silicone
and rigid stainless steel annular rings. Their analysis
included uniaxial stress, lateral stress only and zero
lateral strain, Ky conditions to quantify the lateral
stress rotation effects. They clearly separated the cross-
sensitivity and lateral stress rotation effects which had
been so long confused and mislabeled in the literature.
Their model was axisymmetric for modeling only stress cells
oriented to measure vertical stresses.

All of the above researchers modeled the stress cell
problem using: an axisymmetric model representing a cell
measuring vertical stress; linear elastic soil properties
(except for Audibert and Tavenas, 1975); and isotropic soil
properties. The purpose of the finite element modeling done
for this study was to determine the effects of anisotropic
soil properties, specifically cross-anisotropy, and to model

a stress cell oriented to measure horizontal stresses.

..........
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This required a finite element program that would include
both anisotropic material properties and three dimensional

elements.

4.2 SOIL AS A CROSS-ANISOTROPIC MATERIAL

Mathematical models usually treat soil as a homoge-
neous, isotropic, elastic medium, often with acceptable
results such as the popular Boussinesq solution. However it
is well known that soil is not homogeneous, isotropic or
elastic and it has an extremely complex stress-strain-time
behavior. To treat soil as a general anisotropic material
would require the determination of nine independent elastic
parameters: three elastic moduli, three Poisson's ratios and

three shear moduli as shown in Equation 4.1.

-

’ N 1 K r N
€y /EX —\)Xy/Ey —\)XZ/Ez 0 0 0 Oy
€ 1/E - E 0 0 0 o
y /Ey Vyz/Fz y
£ 1/E 0 0 0 o
< z F - z Z P
ny 1/Gxy 0 0 Txy
sz Symmetrical l/Gyz 0 T2
. \sz/ ] l/ze "xz
3 (4.1)
¥
o Because of the difficulty in determining these nine
. independent parameters, general anisotropic material prop-
;‘ erties are seldom used to model soil. Since soil is often
4

M PORRRRAOS




b

Ib_
:
{'}.
pL
b
b

YT T ‘T;""T‘T‘ N
S Coh

¥ Y YT Ty
Y N

4 .‘AJ‘-'—‘_.""'—

- M N i
CE R

- T e =

P TR AL IO R AP R Y

38

deposited in a sedimentary environment where the soil is
uniform over a large lateral extent, it has been proposed
that a cross-anisotropic elastic material is an improved
mathematical model for soil as compared to the isotropic
model.

A material with no preferred orientation in the hor-
izontal plane has elastic properites that are symmetrical
about any vertical axis. This material is known as trans-
versely isotropic or cross-anisotropic and is the same as
the crystals of a hexagonal system described by Love (1892).
Love showed that a cross-anisotropic material can be de-
scribed by only five independent elatic parameters: L Ey,

. . . 2
Vg vxy’ and ny assuming a coordinate system with the x

plane being horizontal and the y axis the vertical direc-

tion. The four remaining dependent parameters are:

E, = E, (4.2)

Gyz = ny (4.3)

vyz = n(vxy) where n = Ex/Ey (4.4)

G, = —2E— where E = E, (4.5)
2(l+vxz)

By substituting these parameters back into Equation 4.1, the

stress-strain relationship for a cross-anisotropic material
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is obtained:
1 Vxy Vxz 7] y
% N Yy
€x nE E nk 0 0 0 % W
€ 1 LXEX 0 0 0 g
y E E y
Lo o o
8z nk 0z
<y o L 0 0 <r ’
Xy ny Xy
. 1
sz Symmetrical @;; 0 Tyz
2(1+xz) .
\sz i nkE i [ Xz
(4.6)

Wolf (1935) is generally accepted as the first to apply
cross-anisotropy to a soil (Barden, 1963). However, Wolf
assumed that all Poisson's ratio values were zero and there-

fore used only three independent parameters: E, E and G
’ y ny

This does not meet the requirements of Equation 4.4 derived
by Love (1892) and is theoretically unsound.

Barden (1963) correctly applied cross-anisotropy to
describe soil behavior and derived exact expressions for the
vertical normal and shear stresses and approximate expres-
sions for the horizontal normal stresses. Barden states,
"The exact expression for the horizontal stresses . and
oy are, however, _reatly affected by the values of Poisson's
ratio, and so are of little interest in soil mechanics".

Pickering (1970) applied the requirement that the

strain energy of an eclastic material should always be
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positive for a cross-anisotropic material and defined the

limits for the five independent parameters:

Ex >0; Ey >0; ny >0 (4.7;,b,c)

-1 < Vg < 1 (4.8)

n(l-v. )-2v_ %2 50 (4.9)
Xz Xy

These limits allow the material to undergo either a positive
or negative volume change when subjected to a compresssive
stress. Morgan and Gerrard (1973) tested samples of a
medium fine sand, porosity = 0.53, and found that the
modulus decreased with stress level and Poisson's ratio
increased with stress level, but stayed within the limits
defined by Pickering.

Dolezalovd (1974) used the stress-strain relationship
for a cross-anisotropic material, Equation 4.6, to obtain
the expression for KO, the lateral stress ratio for zero

lateral strain:

K =0X¥y _ __¥Z (4.10)

For an isotropic material the expression for the lateral
stress ratio for zero lateral strain, also known as the

coefficient of horizontal soil stress at rest, is:

.....
.....
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Equation 4.10 clearly demonstrates the effect of cross-
anisotropy on the magnitude of the lateral stress.

The value of n, which is the measure of cross-aniso-
tropy in soil, has been measured by many researchers as
summarized by Ladd, et al. (1977). For loose sands plu-
viated through either air or water, n values are typically
0.5. As the sands are densified by vibration, the n value
increases and vibrated dense sands are nearly isotropic with
n values equal to one. Overconsolidated clays may have n
values in excess of three but clays were not used in this
investigation. The range of interest for the n values in

vibrated sands would be between 0.5 and 1.0.

4.3 FINITE ELEMENT MODELING

To pecform a finite element analysis of the Cornell
Stress Cell, CSC, in a cross-anisotropic medium oriented to
measure horizontal stresses, it was necessary to use a
program capable of handling anisotropic material properties
and three dimensional elements. ANSYS, a multi-purpose
finite element program developed by Swanson Analysis Systems

Inc. The

of Houston, Pennsylvania was used in this study.
program has interactive preprocessing which vastly simpli-
fies the data input and eliminates all card punching.

Postprocessing can also be done interactively to reduce the
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large volume of possible output into easily manageable form
and allows graphic displays of solution values.

The first step in the finite element modeling was to
model a rigid ellipsoidal inclusion with an aspect ratio of
0.129, the same as the Cornell Stress Cell. The axisym-
metric mesh shown in Figure 4.1 is composed of four noded
isoparametric elements. The axisymmetric model allowed no
horizontal displacements along the axis, centerline or
surface of the ellipsoid, no vertical displacements along
the plane of symmetry or surface of the ellipsoid and either
specified surface pressures for the isotropic stresses or
both specified surface pressures and specified boundary
displacements for the Ko conditions. This model was used to
compare the finite element results with the theoretical
solution derived by Askegaard (1963) and discussed in
Section 3.2. A comparison of the results follows in Section
4.4,

The mesh shown in Figure 4.1 was then modified to model
a rigid disc with the same aspect ratio. This allowed a
comparison between the rigid ellipsoid and rigid disc to
evaluate the influence of geometry and to compare the
results with those of Monfore (1950).

The third step in the finite element modeling was to
replace the rigid disc with the Cornell Stress Cell describ-
ed in Section 5.1 and shown in Figure 5.1. This axisym-

metrical mesh, Figure 4.2, is composed of eight noded
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Figure 4.1 Finite Element Mesh for Rigid Ellipsoid.
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isoparametric elements which are necessary to simulate
successfully the bending action of the diaphragm. The
deflection at the center of the diaphragm from an applied

uniform normal stress was 1.63x10°sinches/psi (6.00x10-11

m/N/mz) as compared to 1.38x10°° -11

inches/psi (5.08x10
m/N/mz) for a fixed edge diaphragm of the same thickness,
0.025 inches (0.635mm), as calculated from equations defined
by Timoshenko (1955). The increased deflection of the model
is caused by the distortion allowed at the outer edge of the
diaphragm in the finite element model which is not present
in the fixed edge analysis of Timoshenko. It was assumed
that a horizontal plane through the center of the cell was a
plane of symmetry which is not exactly correct but is
thought to be a close approximation. This axisymmetric model
was used to study the effects of soil modulus, Poisson's
ratio and soil anisotropy on the distribution of vertical
stress across the face of the stress cell.

To model the measurement of horizontal stress by a
stress cell, it was necessary to use a three-dimensional
model. By again assuming that a plane through the center of
the stress cell, parallel with the diaphragm face, is a
plane of symmetry there exist three orthogonal planes of
symmetry. The stress cell can then be modeled by represent-
ing only one eighth of the cell as shown in Figure 4.3. The

three-dimensional model is composed of twenty nod:d iso-

parametric brick elements. No displacements were allowed

_________
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normal to and occurring on any of the three planes of
symmetry. Because of the rapid increase in computational
effort required with increasing element sophistication, the
diaphragm was modeled with only six elements. This prevents
direct rumerical comparisons of the results between the
axisymmetric and three-dimensional models. However the
trends in the stress cell performance should be similar and
modeling for exact results between the two stress cell
models was not considered essential. The post processor for
ANSYS calculates the nodal point stresses from the 3x3x3
array of Gaussian points but only for the eight corner
nodes. This did not allow for as smooth a depiction of
normal stress across the face of the cell as did the axi-
symmetric models.

The material properties used for the Cornell Stress

Cell in all models are:

. Titanium E = 16.8x106 psi (116 GN/mz)
v = 0.30
S_ Silicone E = 227 psi (1.56 MN/mz)
Et v = 0.45
P Stainless Steel E = 3Ox106 psi (207 GN/mz)
g v = 0.30
g The material properties for the soil were varied to inves-
F tigate the influence of modulus, Poisson's ratio and cross-
anisotropy.
4 To input the properties for a cross-anisotropic
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material it was necessary to match the stress-strain rela-
tionship used in the element formulation of ANSYS (Kohnke,

1977), Equation 4.12, with that in Equation 4.6.

( 3 [ - 4 N
1 -NUXY -NUXZ
€x E E E o 0 o x
X y z
1 ~-NUYZ
€ —— 0 0 0 g
y Ey E, y
1
€, - o 0 0 92
z
b= IR
Yy §l— 0 0 Ty
y Xy y
Y S etrical = 0 T
yz ymm G yz
yz
1 T
szJ ze XZ
\ ) ] \ /
(4.12)
This requires the nine input parameters of Equation 4.12 be
related to those of Equation 4.6 by the following:
[ E. = E_ = nE
" X z
O
-
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5 E =E
5 y
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L_l_ Ggy = Gy,
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NUXY = ny
NUYZ = nvxy
NUXZ = Vez

which allows all nine input parameters to be expressed in

terms of five independent elastic constants: n, E, ny

vxy' and Vez-

4.4 FINITE ELEMENT RESULTS

In this section the results of the four step finite
element analysis performed in this study are discussed. The
models used in the four step approach are: axisymmetric
rigid ellipsoid, rigid disc and Cornell Stress Cell analyses
and the three-dimensional Cornell Stress Cell which are
described in Section 4.3.

It was decided that the magnitude of the soil stress
normal to the face, at the centerline, of the inclusion or
stress cell would be used for comparisons between the four
different models. It was not considered appropriate to try
to determine an average or equivalent stress across some
portion of the inclusion or stress cell. To do so would

require additional assumptions concerning edge conditions of
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the diaphragm and an arbitrary selection of the sensitive

! g portion.
Ej R Weiler and Kulhawy (1978) determined the equivalent
ﬁf uniform stress on a fixed edge diaphragm necessary to pro-

'I duce a displacement similar to the displacement of the
: diaphragm on the Cornell Stress Cell. In every case, the

equivalent uniform load exceeded the stress determined from

_
R R
A

wess vy
MY

their finite element analysis. The additional displacement
in the finite element analysis was attributed to the pres-
ence of shear stresses 1cross the face of the cell. Another
(;&' likely source of the additional displacement in the finite
element analysis is the nonfixity of the edge of the dia-

phragm which allows small rotations and displacements in the

?j
2

model that are not present in the equivalent uniform stress
on a fixed edge diaphragm.
Fixed edge diaphragms are more sensitive to applied
- pressures near the center than near the edge so that a
uniform pressure determined from an average value of pres-
sure over the face would not necessarily match the actual

displacement shape of the diaphragm. Only the normal stress

in the soil on the axis of symmetry of the cell or inclusion
is used for comparisons in this study for both simplicity
4 and accuracy.

4.4.1 Rigid Ellipsoid

In the first step of the finite element analys.is a

;] rigid ellipsoid with an aspect ratio equal to that of the
-
k
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Cornell Stress Cell was modeled. The vertical stress

:! P profile is shown in Figure 4.4 for the conditions of hydro-
i; - static stress, isotropic soil properties and a Poisson's

i ratio of 0.3. The stress normal to the surface of the inclu-
. sion and along the plane of symmetry of the ellipsoid is

normalized by the vertical stress applied on the soil at the

LRSS At dridr

boundary so that the results could be expressed in percent.
The stress was normalized in all four steps of the analysis
to allow a more convenient method of comparison. Since the

- material properties in all cases were elastic, the magnitude

Uy of the applied stress is not important in the discussion of
the results. The ratio of the applied horizontal to verti-
cal stress, K, is reported for each analysis along with the

value of Poisson's ratio and the ratio of horizontal to

vertical moduli, n.

It can be seen in Figure 4.4 that the normal stress is
nearly constant at 109 percent of the applied stress across
the rigid ellipsoid except at the outer edge where it is
lower than the applied stress. At a distance greater than
two radii from the centerline there is very little change in
the free field stress due to the presence of the rigid

ellipsoid.
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The normal stress on the centerline of the rigid

-
X ellipsoid as determined by the finite element method is

3

1 109.3 percent of the applied strress. For the same condi-
E‘ tions of Poisson's ratio, stress ratio and isotropy, the
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Figure 4.4 Vertical Stress Profile Across a
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theoretical solution of Askegaard (1963) gave 109.1 percent.
This excellent agreement offered evidence that both the
model and the finite element program were capable of pro-
ducing correct solutions.

4.4.2 Rigid Disc

In the second step of the finite element analysis a
rigid disc with an aspect ratio of 0.129 was modeled. The
normal stress across the face of the disc and the plane of
symmetry is shown in Figure 4.5 for the conditons of
Poisson's ratio of 0.3, hydrostatic stress and isotropic
soil. The stress profile is very similar to that of a rigid
ellipsoid with the same conditions shown in Figure 4.4. The
discontinuity occurs at the outer edge of the disc as the
reported stress switches from the face of the disc to the
plane of symmetry.

The normal stress at the centerline of the rigid disc
is 112.1 percent of the applied stress compared to 109.3
percent obtained for the rigid ellipsoid. This close
agreement between the two different shapes of rigid in-
clusion supports the use of Askegaard's 1963 solution for
rigid ellipsoids when modeling stress cells that are disc-
like in shape.

When the applied stress conditions were changed from

hydrostatic, K = 1.0, to at rest, K = Ko, the vertical
stress profile, Figure 4.6, changed significantly. The

¢ normal stress now increases from a value of 105.1 percent at
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Figure 4.5 Vertical Stress Profile Across a Rigid
Disc under Hydrostatic Stress.
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Figure 4.6 Vertical Stress Profile Across a Rigid
Disc under KO Conditions.
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the centerline to 117.9 percent near the outer edge of the
disc. This result is very similar in form to Monfore's
(1950) stress distribution calculated using finite annular
rings, discussed in Section 4.1.

A finite element analysis was also performed where

horizontal displacements of the nodes on the surface of the
rigid disc were not permitted. This was done to check on

the sensitivity of the surface conditions, smooth being

|~ A

modeled by allowing displacements and rough being modeled by
not allowing displacements along the interface. The results
varied by less than two tenths of a percent for isotropic

conditions, at rest stress ratio and Poisson's ratio of 0.3.

On all subsequent analyses, the surface of the cell was

ROAOE 7~ i
o~
4

considered rough and no displacements were allowed along the
interface.
As with the rigid ellipsoid, the stress field at a

- distance greater than two radii from the centerline of the

. o

rigid disc is barely affected by the presence of the in-
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clusion.

4.4.3 Axisymmetrical Cornell Stress Cell

The third step in the finite element analysis was to

replace the rigid disc with a three material model of the

Y e et L

s

p.

b.

s

3 Cornell Stress Cell. The vertical stress distribution

- ;
- across the face of the stress cell and the plane of symmetry !
E for the conditions of Poisson's ratio of 0.3, at rest stress f
¢ ratio and isotropic material is shown in Figure 4.7. The
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Figure 4.7 Vertical Stress Profile Across the
Cornell Stress Cell.
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results should be compared to those of the rigid disc
subject to the same conditions shown in Figure 4.6. Al-
though the basic form of increasing stress toward the outer
edge with a rapid drop in stresss at the edge is similar,
there are some major differences. Because the diaphragm of
the Cornell Stress Cell deflects under load, the resulting
stress on the diaphragm is lower than that of the non-
yielding rigid disc. The stress on the centerline of the
stress cell is 100.4 percent compared to that of the rigid
disc with 105.1 percent. For the same reason the stress on
the relatively soft silicone is very low compared to the
non-yielding rigid disc. Because of the deflection and

resulting decrease in stress over the deflecting diaphragm

and soft silicone annulus, the stress on the relatively
rigid titanium annulus and stainless steel is higher than
that of a disc of uniform stiffness.

Figure 4.8 shows the effects of soil modulus on the
response of the Cornell Stress Cell. Isotropic soil prop-
erties and Poisson's ratio of 0.3 were used for two dif-
ferent stress conditions, hydrostatic and at rest. The
stress on the centerline of the diaphragm, normalized by
the applied vertical stress, decreases slightly as the
modulus of the soil is increased from 100 to 2000 psi (689
kN/m2 to 13.8 MN/mz). This behavior is consistent with the
the oretical response (Peattie and Sparrow, 1954) when the

cell is much stiffer than the soil. The modulus of dense
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Figure 4.8 Effect of Soil Modulus on Measured
Vertical Stress.
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filter sand as determined from shaft pullout tests by
Stewart and Kulhawy (1981) is 1100 psi (7.58 MN/mz). Since
the modulus of sand increases with density and dense tests
in the filter sand created the largest problems in evaluat-
ing stress cell response for Stewart and Kulhawy, a soil
modulus value of 1000 psi (6.89 MN/mz) was selected for all
subsequent finite element analyses. The effect of variation
in the soil modulus was not considered significant for the
range of values studied.

To determine the effect of cross-anisotropic soil
properties on the response of the Cornell Stess Cell,
several finite element analyses were performed with results
shown in Figure 4.9. For varying values of Poisson's ratio
in both the horizontal and vertical planes and for hydro-
static as well as at rest stress conditions, there are only
small changes in the stress cell response as the cross-
anisotropy ratio ranges from 0.5 to 2.0. The range of
normalized stress is much larger between different values of
Poisson's ratio and lateral stress ratio than for the
variations in the cross-anisotropy. In all cases in Figure
4.9 the vertical modulus is 1000 psi (6.89 MN/m®) and the
horizontal modulus is varied to obtain the different n
values. The response of the Cornell Stress Cell is insen-
sitive to changes in the cross-anisotropy of the soil for
measurement of vertical stresses.

The results of the finite element modeling for stress
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cells oriented to measure vetical stress are shown in Figure
4.10 for variations of Poisson's ratio in the vertical
plane. The Ko condition of zero lateral strain with values
of cross-anisotropy varying from 0.5 to 2.0 show very little
sensitivity to the value of Poisson's ratio in the vertical
plane. The value of Poisson's ratio on the horizontal plane
is 0.3 for all results in Figure 4.10. For hydrostatic
stress conditions the cell response is very sensitive to
changes in Poisson's ratio in the vertical plane, especially
at low values of Poisson's ratio. For decreasing values of
Poisson's ratio in the vertical plane the lateral stress
required for K, strain conditions also decreases as de-
termined from Equation 4.10. Weiler and Kulhawy (1978) and
Askegaard (1963) both showed that the effect of lateral
stress on the face of a cell increased with decreasing
Poisson's ratio. These two counteracting trends of de-
creasing lateral stress and increasing lateral stress
rotation that occur with decreasing Poisson's ratio result
in a fortuitous cancellation for the K, condition. With
decreasing Poisson's ratio, the lateral stress is reduced,
but a larger portion of that stress is rotated onto the face
of the cell resulting in nearly constant stress, indepen-
dent of the value of Poisson's ratio. Under hydrostatic
stress conditions the lateral stress is constant and as a
larger portion of the lateral stress is rotated to the face

of the cell with decreasing values of the Poisson's ratio,
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the response of the cell increases dramatically.

The effect of Poisson's ratio in the horizontal plane
on the response of a stress cell measuring vertical stress
is shown in Figure 4.11. For K, stress conditions there
appears to be little effect, just as was shown for Poisson's
ratio in the vertical plane, Figure 4.10. Undecr hydrostatic
stress the stress cell response increases with decreases in
the Poisson's ratio in the horizontal plane. The amount of
change in the stress cell response increases with decreasing
values of Poisson's ratio. Therefore a decrease in the
Poisson's ratio in either the horizontal or vertical plane
will result in an increased response of the stress cell
measuring vertical stress.

Figure 4.12 shows the effect of lateral stress on the
response of stress cells oriented to measure vertical
stress. The stress cell response increases linearly with
lateral stress and the rate of increase of the lateral
stress rotation changes inversely with Poisson's ratio. As
the applied horizontal stress increases, the vertical
response of the stress cell changes proportionally. The
slope of the plot in Figure 4.1l is very sensitive to the
value of Poisson's ratio, with the larger variation in cell

response occurring with lower values of Poisson's ratio.

Weiler and Kulhawy (1978) express the measured vertical

stress on a stress cell in the form:
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measured ~ Capplied (R + 1K) (4.13)

where R is the base registration or cell response in uni-

axial stress, K is the lateral stress ratio, and p is the

magnitude of the lateral stress rotation which is a function
e of Poisson's ratio. From their test results, the base
:‘ registration was a constant 0.82 and the lateral stress

rotation was:

u = 0.684 - 1.657v (4.14)

Expressing the finite element results shown in Figure 4.12
in the same format as Equation 4.13, the base registration
value varies slightly with Poisson's ratio and the magnitude

of the lateral stress rotation is:

u = 0.584 - 1.334v (4.15)

The base registration is intermediate between the values of

~
(e

Weiler and Kulhawy (1978) for the Cornell Stress Cell and

a

those of Askegaard (1963) for a rigid ellipsoid while the

TV cxww wm
- i .

magnitude of the lateral stress rotation is comparable with
both as shown in Figure 4.13.
The differences in the base registration values between

Weiler and Kulhawy (1978) and this study could be from the
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values of soil modulus used in the models and/or the method
of determining the stress cell response from the finite
element results. Weiler and Kulhawy used a soil modulus of
100 psi (689 kN/mz) and the soil modulus used in this study
was 1000 psi (6.89 MN/mZ). The response of the Cornell
Stress Cell determined by Weiler and Kulhawy was based on an
equivalent uniform pressure necessary to produce a similar
diaphragm deflection on a fixed edge diaphragm while this
study used the normal stress on the centerline of the
diaphragm without any modification or averaging technique
applied.

4.4.4 Three-Dimensional Cornell Stress Cell

The fourth and final step in the finite element analy-
sis was to model the Cornell Stress Cell oriented to measure
lateral stress. Two vertical and one horizontal planes of
symmetry through the center of the cell allowed the cell to
be modeled as shown in Figure 4.3. A comparison of the
results for hydrostatic stress and isotropic soil properties
between the axisymmetric model and the three-dimensional
model is shown in Figure 4.14. Although the numerical
values are not the same, the behavior is quite similar
between the two different models. The axisymmetric model
used six, eight noded, isoparametric elements along the
radius of the diaphragm while the three-dimensional model
used only two, twenty noded, isoparametric elements along

the radius of the diaphragm. When the ANSYS postprocesser
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determined stresses for the two-dimensional model it gives
values at each node, or thirteen stress values across the
radius of the diaphragm. For the three-dimensional model,
ANSYS determines only the stresses at the corner nodes of
each element or three stress values across the radius of the
diaphragm. These differences between the models could
account for the difference in the results shown in Figure
4.14,

The three-dimensional finite element model allows a
comparison of the horizontal stress response of the stress
cell in the at rest condition with that derived from theory
in Chapter 3 for a rigid ellipsoid. The lateral stress
expressed as a percent of the applied vertical stress is
shown in Figure 4.15 for variation in Poisson's ratio. For
three different values of cross-anisotropy the stress cell
response parallels the theoretical solution for the rigid
ellipsoid. Again the theoretical solution for a rigid
ellipsoid is found to be valid for representing trends in
the stress cell response.

The results in Figure 4.15 are replotted in Figure 4.16
to show the effect of the cross-anisotropy ratio, n, on the
response of the stress cell. The measured lateral stress is
seen to increase with increasing cross-anisotropy or as the
lateral soil modulus increases since the vertical soil
modulus was held constant at 1000 psi (6.89 MN/mz) for all

the three-dimensional analyses. Stress cells measuring
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lateral stress are affected by the cross-anisotropic prop-

erties of the soil while stress cells measuring vertical
stress, Figure 4.9, are insensitive to cross-anisotropy.
Loose sand may be characterized by a cross-anisotropic ratio
of 0.5 and the value increases to 1.0 as the sand is den-
sified. The résponse of a stress cell measuring lateral
stress to this increse in cross-anisotropy would be to
increase also. Stewart and Kulhawy (1381) speculated that a
change in the cross-anisotropic ratio, n, might account for
part of the reduced response of the stress cell in dense
sand. This is not consistent with the pattern of response
shown in Figure 4.16. With increasing density of sand the
cross-anisotropic ratio increases and with it the response
of the stress cell measuring lateral stress.

Although the cross-anisotropic ratio affects the
response of the stress cell measuring lateral stress, the
Poisson's ratio of the soil has a larger effect. To deter-
mine which Poisson's ratio, the horizontal or vertical, has
the greater influence on the stress cell response, one value
of Poisson's ratio was held constant while the other was
varied. The response of the stress cell when the vertical
Poisson's ratio was varied is plotted in Figure 4.17. The
results are very similar to those when both values of
Poisson's ratio were varied together as shown in Figure
4.15. With Poisson's ratio in the horizontal plane varied,

the stress cell response is shown in Figure 4.18. This plot
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shows the stress cell response normalized by the applied
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> horizontal stress for the at rest condition. There seems to
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be very little sensitivity to changes in the horizontal
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Poisson's ratio and this is consistent with the similarities

in the response of the stress cell shown in Figures 4.15 and

4.17 where both Poisson's ratios are varied and only the

vertical Poisson's ratio is varied respectively. A stress

cell measuring lateral stresses is very responsive to

changes in the value of Poisson's ratio in the vertical

plane and insensitive to changes of Poisson's ratio in the
Y horizontal plane.

The final parameter studied is the response of the
stress cell measuring lateral stress to the variation in the
applied stress ratio. Figure 4.19 shows for several values
of Poisson's ratio and cross-anisotropy the effect of

lateral stress ratio on the response of the stress cell

measuring lateral stress. The response parallels the free
field stress values in all cases. This is quite different
from the response of the stress cell measuring vertical
stress when the lateral stress ratio was varied as shown in
Figure 4.12. For the stress cell measuring lateral stress,
the response normalized by the applied vertical stress is
directly propertional to the lateral stress ratio for a

given value of Poisson's ratio or cross-anisotropy.
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4.5 CONCLUSIONS

As a result of the finite element analyses performed in
this study, the following conclusions can be drawn:

The finite element model results for a rigid ellip-
soidal inclusion match the theoretical solution obtained by
Askegaard (1963) and discussed in Chapter 3. This step was
performed to verify the finite element model and program
being used in the analyses.

Results for a rigid disc are nearly the same as for a
rigid ellipsoid with the same aspect ratio. This supports
the use of the theoretical solution for the ellipsoid to
model the behavior of a disc shaped soil stress cell. The
differences between a smooth and rough surface between the
soil and the stress cell were insignificant. A rough
surface with no displacements parallel to the interface was
used for all subsequent models.

The response of the Cornell Stress Cell is only slight-
ly affected with changes in the soil modulus for values up
to 2000 psi (13.8 MN/mz). This behavior is consistent with
the theoretical response of a cell much stiffer than the
soil. The Cornell Stress Cell oriented to measure vertical
stress is insensitive to changes in cross-anisotropy. The
response is inversely proportional to the value of Poisson's
ratio in either the vertical or horizontal planes. Lateral
stress rotation, the portion of the lateral stress measured

by the stress cell oriented tc measure vertical stress, is
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inversel roportional to Poisson's ratio. The results from
Y prop

this study are intermediate between the theoretical solution

AN
L for a rigid ellipsoid (Askegaard, 1963) and the finite
element solution of Weiler and Kulhawy (1978).
The results for a stress cell oriented to measure

i{ lateral stress parallel the theoretical solution for a rigid
Fﬁ ellipsoid with the same orientation. The stress cell
il response increases with increasing cross-anisotropy for a
&; cell measuring lateral stress. Poisson's ratio in the
;; vertical plane has a pronounced effect on the response of
t& %;6' the cell measuring lateral stress. The same cell is largely
.
;, unaffected by variation in Poisson's ratio in the horizontal
El plane. The response of the cell measuring lateral stress is
ﬁi directly proportional to the lateral stress ratio.
&
L
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= CHAPTER 5

a TESTING EQUIPMENT AND PROCEDURES

In addition to theoretical solutions and finite element
modeling of stress cells, an important part of this study
was the laboratory calibration and verification of the
stress cell performance. The most sonhisticated models and
elaborate theories are of no use if they cannot be verified
by performance. The testing equipment and procedures are

described in this chapter with the results shown in the

{J; Appendices and discussed in Chapter 7.
The first three sections describe the Cornell Stress
Cell used in this study and the equipment and procedures
ﬁi used in calibrating the stress cell in both air and soil.
The stress cell, air calibration chamber and soil calibra-

tion chamber had all been designed and constructed by Weiler

and Kulhawy (1978) and only a few modifications were made as
noted in each section.

The fourth section describes the data acquisition

system used for air and soil calibration tests. The data

k4
t

acquisition system offered a faster and more precise method
of calibrating the stress cells as well as providing the

data in digital form for data reduction and plotting by a

. ‘{ M Rl AR
-_ - N .

desktop computer.

——

Direct shear tests at both constant normal load and

4 constant volume were performed to determine the dilatant

81
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properties of the filter sand used in the soil calibration
tests. These tests are described in section five and help
to explain the response of the soil stress cells used in the

shaft pullout tests by Stewart and Kulhawy (1981).

5.1 CORNELL STRESS CELL

The soil stress cell used in this study is a deflecting
diaphragm strain gaged cell known as the Cornell Stress
Cell. The cell was designed by Weiler and Kulhawy (1978)
for low stress levels in a laboratory environment. The
Cornell Stress Cell was selected for use in this study for
two principal reasons:

1. The Cornell Stress Cell was used by Stewart and

Kulhawy (1981) in their shaft pullout tests in which

major questions arose for the stress cell readings in

dense sand. A major objective of this study is to
determine the source of these apparent anomalies and
provide corrective measures for future applications of
the Cornell Stress Cell.

2. The Cornell Stress Cell was designed, constructed

and calibrated at Cornell University by Weiler and

Kulhawy (1978). That provided a wealth of information

on the stress cell including construction details,

calibration data and equipment as well as a ready
source of stress cells, spare parts and experienced
technicians capable of constructing or repairing the

instruments.
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§ The Cornell Stess Cell is shown in Figure 5.1 as

‘ - constructed by Weiler and Kulhawy (1978). The 0.75 inch

i “as (19.05 mm) diameter titanium diaphragm was a constant

Ef thickness, but the thickness between different cells ranges

from 0.012 to 0.030 inches (0.305 to 0.762 mm). The thinner

AN
v

diaphragms provide increased sensitivity but also greater
deflection under load than the thicker diaphragms. The
optimum conditions would be a very stiff cell with high

sensitivity but since both can not be achieved simultane-

K s bt R ]
AEARRENINS ~ SRR

ously, the best compromise for use in filter sand was a

L

0.020 to 0.025 inch (0.508 to 0.675 mm) diaphragm for the
pressure range of 1 to 30 psi (6.89 to 207 kN/mz).

The silicone and stainless steel outer rings were added
to the titanium body by Weiler and Kulhawy (1978) to reduce
the cross-sensitivity of the cell. Cross-sensitivity is
the response of the strain gage as a result of in-plane
stresses on the diaphragm. The combination of stiff and
soft rings around the cell greatly reduces the in-plane
stress effects on the diaphragm. The rings do not eliminate
the problem of lateral stress rotation which is the effect
on the stress cell caused by the lateral stresses acting on
the material above the diaphragm.

Because the cross-sensitivity of the cell was essen-
tially eliminated by the addition of the outer rings of
silicone and stainless steel, a single large strain gage

could be applied to the diaphragm. The strain gages used

T T T T . e c N
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are full bridge, radial and tangential gages specifically
designed to optimize the output from a deflecting diaphragm.
Similar gages were used as early as 1954 by Redshaw (1954)

to provide maximum sensitivity for his soil stress cells.

5.2 AIR CALIBRATION

To convert the output of the strain gage to a stress
measurement, it is necessary to calibrate the cell against a
known stress. Since the properties of the soil affect the
performance of the stress cell, it is important to first
calibrate the cell using a fluid. By using a fluid, a
uniform pressure can be applied to the diaphragm of the
stress cell. The resulting output of the strain gage can
be plotted against the known applied pressure to obtain the
calibration curve. For ease of calculation and accuracy it

is important that the plot of the cell response to the

applied pressure be linear and without hysteresis.

The air calibration chamber used in this study was
constructed by Weiler and Kulhawy (1978) from a design by
Selig (1978) and is shown in Figure 5.2. By sandwiching the
stress cell between two butyl rubber diaphragms in the
chamber, a uniform uniaxial stress could be applied to the
stress cell. By replacing the rubber diaphragms with
gaskets, a hydrostatic stress could be applied to the stress

cell.

The air supply to the calibration chamber was con-
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Figure 5.2 Air Calibration Chamber for Soil Stress
Cells (Weiler and Kulhawy, 1978).
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trolled by a Fairchild-Hiller Model 10 regulator with a
range of 0.5 to 30 psi (3.45 to 207 kN/mZ) and an accuracy
of 0.01 péi (0.07 kN/mz). Although the regulator was very
accurate the simple dial face was not, and so the air
pressure was measured independently on a mercury manometer
accurate to 0.2 psi (0.1l4 kN/mZ) and a pressure transducer.
The mercury manometer was read and recorded manually for
each pressure applied to the air calibration chamber. The
pressure transducer was read and recorded by the data
acquisition system described in Section 5.4.

The output of the resistance strain gages was measured
by one of two different methods. The first method was to
balance manually the electrical output on a Portable Digital
Strain Indicator, Budd Company Model P-350 with the output
recorded in microstrain. The second method used was the
data acquisition system described in Section 5.4 with the
output recorded in microvolts per volt of input. To convert
the microstrain readings to microvolts per volt, one uses

the formula:

uv GF (5.1)

v T HE T
where GF is the gage factor of the strain gage provided by
the manufacturer.

The procedure used to calibrate the stress cell was to

place the cell in the air calibration chamber with either




the butyl rubber diaphragm or the rubber gaskets, depending
on whether uniaxial or hydrostatic stress was desired. Zero
readings of the manometer and/or pressure transducer and the
stress cell were taken. Air lines with quick-connects then
connected the air supply, regulator, air calibration cham-
ber, pressure transducer and manometer. The desired pres-
sure was then applied through the regulator and the cell
output and applied pressure recorded. The response of the
cell to the applied pressure was not always instantaneous
and a time effect was discovered. The time effect is
described in detail in Chapter 6 and could be eliminated
from the stress cells so that the cell output could be read
immediately after applying the pressure. The variation in
stress cell output could then be plotted versus the applied
pressure to give the air calibration curve. The results are

discussed in Chapter 7.

5.3 SOIL CALIBRATION

Calibration of stress cells in the same soil and under
the anticipated stress conditions in which they are to be
used is essential for accurate measurement of stresses.
Because the material properties of the scil such as particle
size, modulus, Poisson's ratio and anisotropy can affect the
stress cell response, it is necessary to calibrate the
stress cells in the same soil in which they are to be used.

The magnitude of the applied stress and the ratio of hori-
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zontal to vertical stress can also affect the response of a
stress cell and must be considered to obtain an accurate
indication of the stress cell response.

The soil calibration chamber used in this study was
designed and constructed by Weiler and Kulhawy (1978) for
calibrating Cornell Stress Cells in filter sand. The soil
chamber is shown in Figure 5.3 and consists of an eleven
inch (279 mm) inside diameter aluminum pipe which is reces-
sed into stiff aluminum end plates held in place by six
threaded rods. A gum rubber sleeve covers the inside of the
16 inch (406 mm) long pipe and goes over the ends of the
pipe to act as a gasket between the pipe and the end plates.
A separate rubber diaphragm goes over the top of the pipe
before placement of the top end plate. Separately regulated
and measured vertical and lateral pressures can be applied
to the soil through the air supply lines that enter the
chamber through the top plate and pipe respectively. Two
stress cells can be placed in the soil chamber and the lead
wires exit through the base.

With the vertical and lateral stresses being applied
separately, triaxial stress conditions can be varied from
the condition of zero lateral strain, Ko, through soil
failure in triaxial extension. This allows the application
of Ko, isotropic or triaxial stress on the soil but not
uniaxial stress. The relatively stiff pipe chamber prevents
lateral expansion of the soil and so unconfined compression

is not possible in this chamber. This is not a serious

e P L PG Y Y Gl .y . A P G W 2 S 3 4




174 NPT  To ‘air pressure

Baffle '“,',’:'gsg:,',e ' monitoring system
3/8" :
wing |
nuts
N :
-1 | e7716" dia. | T | I-3/4"
lll
| ‘ ]
Rubber
37i"  diaphragm! I{~J___Hose
' Gum clamp
' rubbér
3/8"dia—> | b membrane
threaded ';u |
rod (|9“ ) , 73
long) | Stre:s:}g:el l 15-3/8"
C - J Input air
' | pressure
" valves
< 12 Ill- |w/battles
! on inside of
3/8" Il |chamber)
tapped
hole \ ! .
—Lock nut
,l N ARG it S rlj( X
= 1/4- ; =]
\ = I LN %h— S ™
: : !

)

/8"dia. holes for electricdl leadq -

. 'X1/4"groove

4 < 13-1/2 -

- 15" >

';. Figure 5.3 Soil Calibration Chamber for Stress Cells
- (Weiler and Kulhawy, 1978).

1




drawback, however, since uniaxial stress conditions are
rarely found in soil outside of laboratory experiments.

In soil calibration tests, one must assume that the
stress being applied to the stress cell is known. Usually
the applied stress is assumed equal to the stress on the
soil at the stress cell and losses caused by sidewall
friction are ignored. For this to be true the friction
losses along the sides of the chamber must be reduced as
much as possible so the pressure applied to the top of the
soil sample is transmitted through the soil and not into the
chamber walls. Ingram (1965) measured a thirty percent
difference in stress between the 6.5 and 16.5 inch (165 and
419 mm) level of a four foot (1.22 m) diameter soil chamber
caused by sidewall friction. One way to reduce the effects
of sidewall friction is to make the chamber large so that
the effects would not be significant near the center.
Osterberg (1940) and McMahon and Yoder (1960) used a soil
chamber eight feet (2.44 m) square to calibrate their soil
stress cells in an attempt to reduce the friction loss.

Another common method is to allow the soil chamber to
compress vertically by using compressible rubber, cork or
similar materials between stiff rings to construct the
chamber. Kallstenius and Bergau (1956), Bozozok (1970) and
Mahmood, Mit- "e11l 3 Lindblom (1976) all used chambers
which were allowed to compress vertically with the soil to

reduce friction loss.
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Another way to reduce the frictional losses in the soil
chamber is to use a low friction material for the chamber.
Lazebnik and Smirnov (1964) used polished chrome for their
soil chamber to reduce friction. Abbott (1965) studied the
transmission loss in soil chambers because of sidewall
friction and concluded that the simplest method to reduce
friction was a lubricated rubber membrane. This was done in
this study by using a second gum rubber membrane along the
side of the chamber with silicone grease as a lubricant.

The second rubber liner was slightly shorter than the height
of the tank so that it could move freely as the soil com-
pressed under load. The silicone is a high viscous grease

which allowed displacement between the rubber liners,

independently of the magnitude of the lateral stress. For
very low stress levels, a dry lubricant such as talc or
graphite was used in the early soil tests but was not nearly
as convenient as the silicone grease.

One modification of the soil cnamber as constructed by
Weiler and Kulhawy (1978) was made for this study. The
condition of zero lateral strain, Ko’ was important for this
study and although that condition could be obtained in the
soil calibration chamber simply by assuming the pipe walls
were rigid, the magnitude of the lateral stress would be
unknown. To measure the lateral stress under the condition
of zero lateral strain, a Ko belt was installed in the

chamber. The Ko belt is a thin, 0.002 inch (0.051mm),
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continuous belt of stainless steel six inches (152 mm) high
placed around the soil sample between the two rubber liners.
A linear strain gage on the belt was monitored on the
manually operated Budd Box and could detect a change in
stress of 0.01 psi (68.9 N/mz). The lateral air pressure
could be increased on the soil sample in the calibration
chamber as the soil was loaded and the pressure necessary to
maintain the strain gage reading constant was the magnitude
of the lateral stress for the K condition. An added
advantage of the Ko belt was that, with the air pressure

between the aluminum pipe and outer rubber liner exactly

balancing the lateral soil stress, there was no normal
stress between the two materials. With no normal stress,
the friction between the outer rubber liner and the pipe was

eliminated and the only loss due to sidewall friction would

—r e VT
A s ANMIRANEN
BN o A
o - :
PAEE) PRI

be from the slight elongation of the rubber liner near the
top of the chamber.

The soil calibration of stress cells required about six

(

hours for set up and testing. The aluminum pipe section was

T
.
.

o set upon the base plate with the rubber sleeve in place and
5: the Ko belt if desired for that test. A generous portion of
€  silicone grease was applied to the rubber sleeve and the

Ej second rubber liner put in place. A small vacuum line was
Eﬁ attached to the lateral pressure port to draw the liners up
; tightly against the pipe section until the soil could be put
f. in place. The cables from the stress cells were threaded

3
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through the holes in the bottom plate along with the K belt

strain gage cable and the holes sealed with wax to prevent
soil loss. Soil placement in the chamber depended on the
desired initial density for testing. A funnel with a
quarter inch (6.35 mm) wide spout was used to place the sand
with zero fall to obtain the highest possible void ratio.
Increasing densities were obtained by allowing the sand to
rain through the funnel and fall 1, 4 or 8 inches (25.4, 100
or 200 mm). The stress cells were placed at the desired
level by simply placing them on the surface and continuing
soil placement as before. The initial unit weight of the
soil was determined by subtracting the remaining soil from
the starting weight of soil and dividing by the volume of

3 (0.0242 m3). Two other methods of

the chamber, 0.853 ft
soil placement were used to obtain higher unit weights.

Soil was placed in four equal lifts and compacted with a ten
pound (44.5 N) drop hammer dropped onto a plywood disc
covering the layer. The number of blows per lift depended

on the desired final density. The soil was also densified

by placing the entire soil calibration chamber on a shaking
table and, with a dead weight load applied to the top sur-
face of the soil, the chamber was vibrated to achieve the
desired density. Angle iron brackets fastened to the thread-
ed rods were used to hold the pipe section securely to the
base during vibration to prevent soil from getting caught

between them where the sand grains could puncture the rubber

liner.
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Once the soil and stress cells were in place the top
rubber diaphragm and cover plate were secured with bolts on
the threaded rods. The same air pressure regulators,
manometer and pressure transducers used in the air calibra-
tion were connected to the vertical and lateral pressure
ports in the soil calibration chamber using quick-connect
hoses. For Ko tests the lateral pressure was adjusted as
necessary to maintain a constant output from the strain gage
on the K belt as the vertical pressure was applied. Read-
ings of the stress cells, usually two cells per test, and
applied pressures were taken at increments of pressure both
loading and unloading. The data acquisition system describ-
ed in Section 5.4 greatly simplified the data collection and
allowed the test to be performed quite rapidly, usually
taking only twenty minutes. For isotropic or hydrostatic
stress conditions only one air pressure regulator was used
and the hoses were connected so as to provide the same air
supply to both the vertical and horizontal ports. Triaxial
tests were performed by applying the vertical and lateral
pressures separately either neglecting the K, belt or not
even having it in place during the test. Triaxial tests
included a constant stress ratio test and triaxial extension
with the lateral stress increasing to fail the soil under a

constant vertical stress.
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5.4 DATA ACQUISITION SYSTEM

A data acquisition system was essential for recording
the output of the soil stress cells as it varied with time.
Because the initial change in response occurred more rapidly
than could be recorded on the manually onerated system, the
following data acquisition system was used.

The system was a Hewlett-Packard HP-3052A Automatic
Data Acquisition System controlled by an HP-9825A desktop
computer. Power to the instruments was provided by a zero
to nine volt direct current HP-6281A power supply through an
interface bank of twenty, five pin Amphinol plugs. Two
forty channel HP-3495A scanners allowed as many as eighty
instruments to be used at any one time although only five
were used at any one time in this study. The electrical
output of any channel could be read by an HP-3455A digital
voltmeter to an accuracy of one microvolt DC with a maximun
frequency of twenty-three readings per second. The entire
data acquisition system including the power supplies,
interface plugs, scanners and digital voltmeter were all
conveniently housed in a wheeled cabinet.

The programmable desktop computer, HP-9825A, controlled
the operation of the data acquisition system and permitted
channel selection, frequency of readings and recording of
data. The raw data of voltage in digital form was typically
stored in an array and recorded on tape for each test.

Additional programming allowed the raw data to be manipu-
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lated and converted into more usable form. An HP-82905A
matrix printer was used to obtain a hard copy of the reduced
data as each test was performed. The computer was also
programmed to allow the test results to be plotted on an HP-
7225A plotter.

Once a test was programmed on the computer the data
were taken, recorded, reduced and printed and the test
results were plotted without any manual interference, which
provided speed and precision for the laboratory tests.
Because of the tremendous convenience of using the data
acquisition system, it was used for most of the air and soil
calibration tests. All measurements of stress cell response
and applied pressures could be and were taken manually using
the Budd Box or mercury manometer, respectively. Manual
readings were taken periodically throughout the testing
program to ensﬁre the automatic system was giving results

consistent with the manual results.

5.5 DIRECT SHEAR AT CONSTANT VOLUME

A key to understanding the performance of soil stress
cells in dense granular material is the dilatancy of the
soil. One of the most common methods of measuring the
volume change characteristics of a sand is to plot the
variation in sample height during a direct shear test in
which the normal load is held constant. Typical test

results are shown in Figures A.5 through A.13 for the filter
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sand used in this study.

Another method of determining the dilatancy of the
dense granular material would be to measure the increase in
normal load necessary to shear the soil at constant volume.
This was considered to be similar to the conditions of the
dense soil as it was sheared by the pullout of a shaft as
Qf performed by Stewart and Kulhawy (1981). The dense sand in
:. zero lateral strain, Ko, conditions could increase in volume

| only slightly when sheared and therefore the stress would
: _ increase as in the constant volume direct shear test.
Ej Lk 4 The volume of the soil in the shear box was held
. constant during shear by varying the load on the hanger. A

lever with the fulcrum on the hanger and the short end

secured to the shear frame by an ajustable turnscrew was
used to apply load on the soil. The long arm of the lever
with a mechanical advantage of five to one was secured to

- the shear frame by a heavy proving ring to measure the

applied normal load. As the proving ring deflected to

v
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measure load the turnscrew was adjusted at the other end of
the lever to maintain the position of the fulcrum to within

0.001 inch (0.025 mm).

The constant volume direct shear test was performed by

AN A
ARSI

first placing the filter sand in a standard square shear box
r«
}‘ at the desired density. The top cap and hanger were placed
§ on the shear box and zero readings taken on four dial gages,
¢ two measuring the horizontal and vertical displacements of
™.
F 4

-
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the shear box and two in steel proving rings measuring the
horizontal and vertical loads on the shear box. The sand
was then sheared at a constant rate of horizontal displace-
ment. As the dense sand sheared and attempted to dilate,
the hanger could deflect vertically only as the proving ring
on the lever deflected. To prevent any vertical expansion
of the sample, the turnscrew on the short arm of the lever
was adjusted to compensate for the deflection of the proving
ring. With a five to one advantage in the lever, it was
quite easy to maintain the hanger and therefore the soil

sample at nearly constant volume. Once the sand passed the

peak shear stress, the normal load on the hanger had to be

reduced to maintain constant volume which again was easily

!i done by adjusting the turnscrew. Results from these con-
1 stant volume direct shear tests are included in Appendix D
i; . and discussed in Chapter 7.
: 2;;;

5.6 CONCLUSIONS
E. The equipment and procedures used in this study have
F; been described in this chapter. These include the Cornell

Stress Cell, air and soil calibration of stress cells, the

data acquisition system and constant volume direct shear

tests on filter sand. The results from these laboratory
tests are included in the appendices and summarized in
Chapter 7. An attempt was also made to measure the vari-

ation in the soil density around a stress cell by freezing
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the samples. This was not successful as explained in
Appendix F.
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CHAPTER 6

RN TIME EFFECTS OF THE CORNELL .STRESS CELL

With the original design and construction of the Cornell
Stress Cell (CSC), the thin diaphragm deflection was mea-
sured by a special radial and tangential strain gage and it
was assumed that the gage would provide nearly instantaneous
response to the applied pressure. In their calibration
tests, Weiler and Kulhawy (1978) state that '"The response of
the cell to the air pressure was nearly instantaneous."
(33 However, while performing a rapid calibration of the
stress cells in the air calibration chamber, it was dis-
covered that a hysteresis developed in a load-unload cycle.
This hysteresis, Figure 6.1, resulted in a positive strain
reading after all load had been removed and it was soon
discovered that the strain readings increased with time for
each load increment and decreased with time for each unload
increment. Figure 6.2 shows the variation in output of one

cell when holding the pressure at each load increment con-

stant for ten minutes. In an effort to quantify this time
effect, numerous time readings on the CSC were conducted and
3 all probable causes of time effects on strain gages were

E! considered. The ensuing investigation resulted in a math-

3 ematical procedure for quantifying the time effects, defin-
PA -7, ing the cause, and obtaining a design change to eliminate

b 4 the problem.
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Figure 6.1 Time Effect of Cornell Stress Cell during
Air Calibration Test.
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6.1 QUANTIFYING THE TIME EFFECT

To define the problem it was necessary to perform
extensive tests on the stress cells with time as a variable.
Since a major portion of the response occurred within the
first few seconds of the applied pressure change it was
essential to measure the time response within seconds of
varying the load. This was not possible with the manually
operated Budd Box, Vishay Model P-350 Portable Strain
Indicator. Because of the inability to measure rapid
changes in the stress cell response with the manual device,
a data acquistion system capable of sampling at a maximum
rate of 23 times per second was used for data collection.
This system was described in Section 5.4.

The test results showed that the cell response in-
creased at a decreasing rate with each pressure increment
and decreased at a decreasing rate with each unload in-
crement, Figure 6.3. The trend seemed quite similar for
both loading and unloading cycles, but opposite in sign, and
also seemed to vary in proportion to the loading or un-
loading increment. The results of the time tests were
normalized by dividing by the pressure increment and plotted
versus log time to obtain a linear variation. This allows
the time effect to be expressed as a percent error of the
pressure increment per log time. The percent error per log
time varied for each cell tested but typical values were two

to three percent, with cell number one having an error of
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TIME LAG OF STRESS CELL # 24
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Figure 6.3 Stress Cell Variation with Time, Normalized
by the Load Increment.




nearly six percent as shown in Figure 6.4. One minute after
applying the pressure increment was arbitrarily chosen as
the zero value to standardize the test results, although any
time value could have been used with the same results.
Although the time effect could now be taken into
account in using the Cornell Stress Cell, the underlying

cause had not yet been determined.

6.2 POSSIBLE CAUSES OF TIME EFFECTS IN CSC

Possible causes of time related changes in SR-4 strain
gages include: temperature variation, variation in power
supply, strain in excess of the gage limits, cement in-
stability and gage creep. Possible causes of time related
changes in the stress cell itself include variation in the
applied pressure and pressure in excess of the yield stress
of the cell diaphragm. Each of these possibilities was
considered as a cause for the time effects as measured in
the laboratory.

The possible causes from the stress cell itself were
considered first, and eliminated as causes for the time
effect. The pressure applied to the stress cell was con-
trolled by a Fairchild-Hiller Kendall Model 10 pressure
regulator capable of holding a set pressure to within 0.0l
psi (0.069 kN/mz). The pressure was independently measured
on a mercury manometer scaled from zero to thirty psi (0 to

207 kN/m2) and read to within one millimeter of mercury
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which corresponds to 0.014 psi (0.097 kN/mZ). At no time
during testing was there ever a variation in pressure beyond
these limits, which are of the same magnitude as the stress
cell sensitivity. Therefore variation in pressure can not
explain the time effect.

If the pressure applied to the stress cells creates
stresses in the diaphragm that approach the yield stress of
the material, titanium, then metal creep could occur and
cause a time effect. According to Timoshenko (1955), a

uniform pressure on a fixed edge circular diaphragm creates

a maximum stress at the inside edge of:
(6.1)

in which: p = uniform pressure, r = radius of the diaphragm
and t = diaphragm thickness. Even the cell with the thin-
nest diaphragm of 0.012 inches (0.305 mm) could sustain a
pressure of 95.6 psi (659 kN/mz) before first yield occurs.
At stresses below yield and at room temperature, the titan-
ium has negligible creep; it is the ability of titanium to
sustain high loads at elevated temperatures that make it
useful in the manufacturing of jet engine turbine blades.
Therefore the metal creep was eliminated as a possible
source of the time effect.

The time related causes of change in SR-4 strain gages

were considered as sources of the CSC time effect. A
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uniform temperature change can create a change in the strain
gage output by inducing a strain proportional to the tem-
perature change. By selective placement of the gages, and
matching the coefficients of thermal expansion between the
gage and the base metal, a temperature compensating gage may
be constructed (Perry and Lissner, 1955). The gages used in
the Cornell Stress Cell are of the temperature compensating
type: Micro-Measurements EA-05-683JC-120 and Baldwin Lima-
Hamilton FAES 4-69-35-S5EL. The coefficient of thermal
expansion of titanium is 4.9 parts per million (ppm) per
degree Fahrenheit and of the gage is 5.0 ppm/oF. The stress
cell should be relatively insensitive to a uniform tempera-
ture change. Cells tested in the laboratory showed a var-
iation in the zero value of one microstrain (ppm) per degree
Celsius and no change in the slope of the calibration line
as shown in Figure 6.5. The calibration tests which dis-
played the time effect were performed in a temperature
controlled room with the cell installed in the aluminum air
calibration chamber which would further protect the cell
from transient temperature variations such as drafts.

The temperature can also cause change in the strain
cell output if a thermal gradient existed across the dia-
phragm. The diaphragm will deflect because of uneven tem-
perature and the resulting strain will be detected by the
gage. There are two possible sources of a thermal gradient

in the stress cell. The first is from resistance heating of
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the gage caused by current flow through the gage and the
second possible source is from rapid pressure variations of
the air in the air calibration chamber. The input voltage
was nominally two volts for the 120 ohm resistance gage
which creates a current of 16 milliamperes, well below the
25 milliamperes recommended by the manufacturer, Micro-
Measurements, to prevent resistance heating. The second
possible source of temperature variation is because of the
rapid compression or expansion of the air in the calibration
chamber. When the pressure is increased rapidly the tem-
perature increases and when the pressure decreases rapidly
the temperature of the air decreases. However because of
the small volume of air required in the air calibration
chamber, 2.4 cubic inches (39400 cubic millimeters), and the
insulating effect offered by the rubber membranes which
cover the cell, this possible temperature gradient is
negligible. Even with pressures increased in increments of
0.5 psi (3.45 kN/mz) several minutes apart, the time effect
of the stress cells was still present.

Voltage variation is a common source of time variation
in SR-4 strain gages. Since the output voltage of the gage
is directly proportional to the input voltage, any change in
the input voltage is reflected in the gage output. The
voltage can fluctuate because of unsteady generation or
change in the temperature as the power source warms up. To

eliminate a voltage variation as a cause of the time effect,
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the input voltage was recorded and used to normalize the
output for each reading of the stress cell. The input
voltage was usually within 0.0001 volts of the initial two
volt nominal voltage throughout the duration of any test and
a single value could have been ucsed with very little loss of
accuracy. With such constant power supplied, and use of the
actual input voltage at each reading, voltage variation
could not be the cause of the time effect.

Adverse time effects can occur if the gage is strained
beyond its design limits. The gages used have a strain
limit of five percent or 50,000 ppm. The maximum strain of
the thinnest gage subjected to thirty psi (207 kN/mz) of
uniform pressure is only 1450 ppm; therefore excessive
strain is not the cause of the time effect.

The most common source of time effects in SR-4 strain
gages 1is cement instability or gage creep. This occurs when
inelastic shear deformation in the adhesive between the base
material and the gage allows the gage to relax with time and
thereby gives a strain reading in which the absolute value
decreases with time. When the gage is elongated, the shear
deformation in the adhesive allows the gage to shorten
relative to the base material; when the gage is initially
shortened, the gage will elongate relative to the base
material. Creep is shown graphically in Figure 6.6b as
reported by Matlock and Thompson (1955). The time effect of

the Cornell Stress Cell is opposite in sign as shown in
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Figure 6.6c, and therefore is not caused by gage creep.

When the possible causes of the time effect on the
Cornell Stress Cell because of the titanium cell body and
the strain gage had been eliminated, there remained only two
other possibilities. First was the friction between the
rubber membrane and the titanium diaphragm during deflection
of the diaphragm while loading. A frictional force along
only one face of a thin plate can cause bending moments
which might be measured by the strain gage. If displacement
between the rubber and diaphragm was a function of time,
then friction could be the source of the time effect. To
check this possibility, two different tests were performed.
The surface between the cell and the rubber membrane was
lubricated using either graphite or talc to reduce any
possible frictional effects, and tests were conducted using
a dead weight load applied as a point load at the center of
the diaphragm. Neither of these testing procedures elim-
inated or significantly reduced the time effect.

The final possible cause of the time effect was not
related to the cell, the strain gage or the testing equip-
ment but was the coating of polyurethene, Micro-Measurements
M-Coat A, applied to waterproof and protect the strain gage.
If the M-Coat A were to contribute a measurable portion of
the strength of the diaphragm, then as the diaphragm was
deflected the M-Coat A would carry part of the load. Since

the coating is plastic it can not sustain a significant load
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and as it releases the load, the diaphragm would carry an

increasing portion of the total load applied.

6.3 CAUSE OF TIME EFFECT IN CSC

Gage reinforcement because of the load transfer between
the plastic waterproofing and the metal diaphragm matches
the behavior of the time effect in the Cornell Stress Cell
shown in Figure 6.6c. To verify that this was the cause of
the time effect, several of the stress cells with measured
time effects were treated with Toluene or Acetone solvents
to remove the plastic waterproofing layer and were recali-
brated. A typical recalibration is shown in Figure 6.7 for
a cell which previously had a time effect of two percent
error per log time. The linear calibration results were
without any hysteresis and tests with the load held constant
for ten minutes at each increment of load were without
measurable time effects.

During removal of the waterproofing on some of the
cells it was discovered that the strain gage lead wires were
encased in the polyurethene coating and securely fastened to
the diaphragm. The lead wires could act as reinforcement
for the coating and aggravate the time effect of the cell.
In all the stress cells which displayed a time effect of two
percent error per log time or greater, at least one of the
four lead wires was bonded to the diaphragm by the water-

proof coating of M-Coat A.
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Figure 6.7 Air Calibration for Cornell Stress Cell
with Waterproofing Removed.
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The cause of the time effect on the Cornell Stress Cell
is gage reinforcement because of load transfer from the
waterproof coating to the diaphragm. When the waterproof
coating bonded the lead wires to the diaphragm, the time
effect was exaggerated to values as large as six percent
error per log time.

The gage reinforcement of the thin diaphragm stress
cells is only rarely mentioned in the stress cell litera-
ture. In a 1955 Bulletin by the Waterways Experiment Sta-
tion discussing stress cell design, Woodman (1955) states,
"The waterproofing material must not be so stiff as to cause
undue resistance to movement of the diaphragm'. This cor-
rectly describes the problem of gage reinforcement in the
CSC but there is no specific recommendation for design, no
indication of the relative magnitude or the effect of water-
proofing on the time effects. Dorsey (1980) mentions gage
reinforcement of thin diaphragms and states, '"This effect
(gage reinforcement) can become so serious that it is not

possible to correct it by changes in strain gage design''.

6.4 SOLUTION TO ELIMINATE TIME EFFECTS

To eliminate the time effects on the Cornell Stress
Cell, the waterproof coating of M-Coat A must be removed by
using Toluene or Acetone solvent. A new protective coating
of M-Coat A may be applied in a single thin coat with care

taken to keep the lead wires from bonding toc the diaphragm.

PO =g

- e




Paiing S o Futbuaet
T e

280 ANMBAREE
-l

- vr
ey z*rf,,' AR 1 o,
1 A 1 ’ 1 . LA - £ - -

RSO | r'

LT T .2 - - - e '
R O T T O T T T - S -0 N e N A e R N Y

118

A soft flexible waterproof coating such as Micro-Measure-
ments M-Coat C made of silicon rubber would provide protec-
tion without creating gage reinforcement and would be
considered superior to M-Coat A for this application. The
waterproofing on existing cells which display no time
effects shculd not be removed since the cells perform
satisfactorily and damage to the gage is possible during

removal of the waterproofing.
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CHAPTER 7

" LABORATORY TEST RESULTS

Theory and computer models are useful tools for the
engineer but the only real proof is in successful perfor-
mance. In Chapter 3 the theoretical treatment of soil
stress cells was discussed and in Chapter 4 the finite
element modeling of the stress cells was explained. This
chapter is a discussion and summary of the results from the
laboratory tests performed for this study.

Section one describes the results of the air calibra-
tion of Cornell Stress Cells after the time effects from
gage reinforcement had been eliminated. The second section
describes the results from the measurement of the lateral
stress ratio, Ko' for conditions of zero lateral strain

using the Kozbelt on the eleven inch (280 mm) diameter

sample. The third section summarizes the results from the
calibration of Cornell Stress Cells in filter sand under KO,

isotropic and triaxial stress conditions. The final section

of this chapter discusses the results of constant volume
direct shear tests on filter sand and their significance to
the understanding of the shaft pullout test results of

& Stewart and Kulhawy (1981).
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g~ 7.1 AIR CALIBRATION OF CORNELL STRESS CELLS

| « Soil stress cells must be calibrated against a known

uniform stress to convert the cell output to a stress

Q} reading. The most common method for accomplishing this

" calibration is with an air pressure chamber, although fluid
pressure chambers are also used. The calibration of the
Cornell Stress Cell was performed with an air calibration
chamber as described in Section 5.2. The desired results
from the air calibration are a linear calibration line
without hysteresis.

(5# Chapter 6 describes the investigation into the time
effect of the Cornell Stress Cell which was caused by gage
reinforcement from the polyurethane waterproof coating.

When using very thin diaphragms, the plastic waterproof

coating could carry a measurable portion of the applied
load. Being plastic however, the coating could not sustain

- the load and it was slowly transferred to the diaphragm

resulting in increased output with time. The time effect

caused a hysteresis which had to be eliminated before proper

L3 e gun ) 4
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P NSO

air calibrations could be performed and this was done by
removing the waterproof coating.

Once the time effect problem was eliminated, the air

g

b calibration of the Cornell Stress Cells resulted in linear
r-

{ calibrations. A typical plot of cell output in microvolts
'

f per volt versus the applied air pressure is shown in Figure
=
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7.1. The calibration is linear and without hysteresis

throughout the pressure range of 30 psi (207 kN/mz). The
calibration plot is the same for both uniaxial applied
stress and hydrostatic stress conditions. This dual cal-
ibration was performed to verify the lack of cross-sensi-
tivity in the Cornell Stress Cells to a uniform lateral
stress. The air pressure acting against the edge of the
cell had no noticeable effect on the calibration. This does
not mean that the cell is insensitive to concentrated
lateral loads as was demonstrated by Weiler and Kulhawy
(1978). The outer rings of stainless steel and silicone are
used to reduce the effects of concentrated lateral loads and
eliminate the problem of cross-sensitivity.

Table 7.1 summarizes the calibration constants for the
Cornell Stress Cells used during this investigation. Most
of the cells were calibrated during the investigation of the
time effect and were not used in any soil calibration tests.
The variation in cell output between cells of the same
nominal thickness is probably caused by the use of two
different strain gages in the cells, Micro-Measurements EA-
05-6833C-120 and Baldwin Lima-Hamilton FAES 4-69-35-S5EL,
with resistances of 120 and 350 ohms respectively. Some
variation is also expected in the diaphragm thickness
because of the milling tolerance of 0.001 inch (0.025 mm)
which would result in a variation in the calibration con-

stants.
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AIR CALIBRATION
STRESS CELL # 1
DATE: 19 JAN 1982
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Figure 7.1 Air Calibration of Cornell Stress Cell #1.
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Diaphragm Calibration

Thickness Constants

(inches) (psi/uv/V)
A 0.025 0.1783
¢ 1 0.020 0.0662
g 3 0.025 0.1323
(] 9 0.025 0.1087
. 10 0.025 0.0653
o 11 0.020 0.0715
= 12 0.025 0.0959
3 ) 13 0.025 0.0667
S e 15 0.030 0.1407
qQ ‘v 17 0.020 0.0588
o 18 0.015 0.0287
. 19 0.015 0.0257
- 20 0 015 0.0257
- 21 0.015 0.0277
- 22 0.015 0.0270
h 23 0.012 0.0171
g 24 0.012 0.0101

Note: 1 inch = 25.4 mm 2
1 psi = 6.89 kN/m
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Table 7.1 Calibration Constants for Cornell Stress
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All the air calibration tests performed after the time
effects had been eliminated were linear and without hystere-
sis as shown in Figures 6.7 and 7.1. The calibration
process proved to be fast, easy and repeatable and is

recommended for future air calibrations.

7.2 KO CONDITIONS IN FILTER SAND

The condition of zero lateral strain upon vertical
loading in the soil is known as at rest conditions. The
ratio of lateral to vertical stress under these conditions
of zero lateral strain is Ko, the coefficient of horizontal
soil stress at rest. The Ko conditions are found in soils
deposited in a sedimentary environment where the soil is
deposited over a wide lateral extent which leads to uniaxial
vertical strain. The soil subject to load from a wide
footing is also under uniaxial strain. The ratio of lateral
to vertical soil stress may range from the active case, Ky,

to the passive case, K which are the limiting values at

P
failure. The Ko condition is a special case where there 1is
no lateral deformation and represents an intermediate value
between the limiting values at failure. Although the
lateral stress ratio is very sensitive to lateral deforma-
tions, the KO condition more nearly approximates many earth

conditions than would uniaxial stress or hydrostatic stress

conditions often performed in the laboratory. The K
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condition was of particular interest in this study and was
used for many theoretical solutions and in finite element
modeling and soil calibration tests.

The coefficient of horizontal soil stress at rest was
determined in this study by measuring the air pressure
necessary to maintain zero strain in the Ko belt as de-
scribed in Section 5.3. The results from seventeen separate
K, tests are included in Appendix C. The K, values for the
initial loading cycle are summarized in Figure 7.2. The
theoretical values for Ko as a function of the friction
angle are also plotted for comparison. Jiky (1944) deter-

mined the variation of K with friction angle to be:

K, = (L + (2/3) sin®)(1l - sin@)/(1 + sin®) (7.1)

which is often abbreviated to:

Ko =1 - sin@ (7.2)

Hendron (1963) solved the problem of K for elastic spheres

and found it to vary with friction angle to give:

k =1 1+ /6/8 - 3/6/8 sinp (7.3)
© 2 1 - /6/8 + 3/6/8 sin®

Many researchers have found that Jiky's solution fits data

for most angular sands and Hendron's solution is a better

.......................
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Figure 7.2 KO Values for Filter Sand.
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fit for rounded sand particles.

Although each individual test in Appendix C seems to
give good results, when plotted together there is consider-
able scatter compared to the theoretical solutions. Some of
this scatter could be from the wide range of friction angles
measured for filter sand as shown in Figure A.4. With a
variation of several degrees in the friction angle, each
point on Figure 7.2 could be moved left or right and only a
general trend of decreasing K, values with increasing
friction angle can be obtained from this data.

The Ko values plotted in Figure 7.2 for the two compac-
ted samples with the highest unit weights may be too high.
The values shown are for the first cycle of loading which
was only 10 psi (68.9 kN/mz) of applied vertical stress. 1If
the applied stress is less than the maximum past stress, the
Ko value would be for an overconsolidated sample which is
known to be larger than the KO value for a normally con-
solidated sample. For both of these highly compacted
samples, the K, values decrease for subsequent loadings at
higher applied vertical stresses. With the K, values for
these two dense samples reduced from 0.38 and 0.30 to 0.30
and 0.27, respectively, all the dense samples seem to fit
the solutions proposed by Jaky and Hendron quite well. The
medium dense sample prepared by light vibration with a K,
value of 0.51 has the largest deviation from the theoretical

solutions. All the pluviated samples have lower Ko values
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than those proposed by Jaky (1944) and in one case as much
as 50 percent lower. This could perhaps be caused by the
soil structure formed during the pluviation to create the
low unit weights. The looseness of the structure could give
an incomplete lateral stress transfer resulting in lower Ko
values. Except for the heavily compacted samples already
mentioned, there is no consistent trend in the Ko values for
subsequent cycles of loading, although the changes are all
small.

These K, tests are larger and looser than any other Ko
tests found in the literature which are usually performed in
special oedometers or standard triaxial testing apparatus.
The effects of both sample size and sample preparation could
result in the differences seen between the tests performed
in this study and those from the literature.

Schmidt (1966,1967) determined that the change in the
lateral stress ratio for at rest conditions during unloading

could be expressed as:

K =K ocr® (7.4)

where KON.C. was the lateral stress ratio at rest for
primary loading and OCR was the Over Consolidation Ratio.
The alpha, o, value was the slope of the log K versus log
OCR and Schmidt determined a range of alpha for sands to be

from 0.3 to 0.5. Sherif and Ishibashi (1981) suggested
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alpha to be nearly constant at 0.7 for the sands they

! -~ tested. Mayne and Kulhawy (1982), using data from 67 sands

i o and 32 clays, determined alpha to be equal to sinf with a

: correlation coefficient of about 0.7. The results for alpha
ii values from the filter sand used in this study are shown in

Figure 7.3 as they varied with unit weight. The general

?: trend is for alpha to increase with increasing unit weight
E. as was reported by Al-Hussaini and Townsend (1975) and Mayne
i; and Kulhawy (1982). However Alpan (1967) reported that the

alpha values in sand decreased from 0.5 to 0.4 with increas-

ing friction angle or density. With such contrasting values
and trends for alpha reported in the literature it is not
surprising to find such wide scatter as shown in Figure 7.3.
As with the Ko values, the test results for each test appear
very good but when plotted together display considerable
scatter. The loose filter sand has alpha values near 0.3

and the dense filter sand has alpha values near 0.7 but
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there is too much scatter in the data to draw any firm

’

correlations. Again the question of the influence of struc-
ture between loose pluviated samples and dense compacted

samples must be raised. The loose pluviated samples show

Ty
PR

much less increase in lateral stress for unloading than do

T

% the dense samples, perhaps because of the loose structure in
)

E; the soil which inhibits full lateral stress transfer.

E; The Ko belt seemed to work well in determining the

E. coefficient of horizontal soil stress at rest for each test
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in the filter sand. Only general trends could be obtained
from the data because of considerable scatter between tests.
The Ko values decrease and the alpha values increase with

increasing unit weight of the filter sand.

7.3 SOIL CALIBRATION OF CORNELL STRESS CELLS

For proper interpretation of soil stress cell results
it is essential to have calibrated the cells in the same
soil and under the same loading conditions as expected in
the application. The only soil used in this study is filter
sand described in Appendix A. The applied stress conditions
included Ko’ isotropic and triaxial stress on loose, medium
dense and dense sand. The soil calibration chamber and pro-
cedures are described in Section 5.3.

The results from all the soil calibration tests are
shown in Appendix B. Each plot shows the stress cell
response in psi (1 psi = 6.89 kN/mz) versus the apnlied
stress in psi. An ideal calibration would be a straight
line with a slope of 1.0 for both loading and unloading.
This would happen only if the stress-strain properties of
the cell exactly matched the properties of the soil. Since
the stress-strain properties of the soil vary with stress
level, that requires the properties of the ideal stress cell
to also vary with stress level. This ideal stress cell has
never been constructed and the study of stress cell theory

has led to the conclusion that a cell which is very stiff
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relative to the soil will produce a nearly constant error
over a wide range of conditions. A constant error in the
stress measurements can easily be corrected in the inter-

pretation of test results by applying a registration value,

R. The registration is the slope of the stress cell re-
sponse versus the applied stress as shown for the loading
cycle beneath each figure in Appendix B as determined by a
least squares linear regression program. Registration
values greater than 1.0 occur when the stress cell responds
with a measured stress greater than the applied stress,
which is known as overregistration. When the stress cell
responds with a value lower than the free field stress, it
is called underregistration. Upon unloading the soil, the
stress cell response lags behind the applied stress and
results in a hysteresis loop. The hysteresis is determined
by dividing the maximum deviation from the straight line,
with a slope equal to the registration, by the maximum
applied stress and then is expressed as a percent. Most of
the figures in Appendix B show the stress cell response for
several loading cycles and the behavior on unloading appears

repeatable.

Figures B.l through B.21 show the soil calibration of

the Cornell Stress Cell in Ko conditions of zero lateral

E f‘T AN ‘e

strain and the results for the first cycle of loading are

summarized in Table 7.2. The registration value, the range

DSl 4 e

of registration values and its standard deviation for the
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tests, as well as the hysteresis (in percent) for both
loading and unloading cycles are included. The loose tests
were all prepared by pluviation of the sand through air with
a height of fall of four inches (100 mm) or less. The
medium dense tests were prepared by pluviation of the sand
through air for an eight inch (200 mm) drop or by mild
vibration of the aluminum tank. The dense tests were pre-
pared by vigorous vibration or compaction in lifts using a
drop hammer.

The registration values for horizontal stress measure-
ments in Ko conditions are higher than for vertical stress
measurements in the same tests. The standard deviation for
the registration values is smaller for lateral stress than

vertical stress in both loose and dense sand but is larger

- for lateral stress in medium dense sand. It is not possible
32 | to sort out how much of this deviation is from placement

'. :i-*. effects and how much is from the soil-cell interaction.
Tests on the effect of placement of soil stress cells by
Hadala (1967) showed a twenty percent deviation in the

ﬁi registration caused by the inherent difference in placement.
3 The hysteresis is an indication of nonlinearity and is
relatively small in loading for both vertical and lateral

Ei stress measurements. Upon .nloading the hysteresis is

F' several times larger for the cells measuring vertical stress
é; }f:‘ than for the horizontal stress measurements. Weiler and

F 4 | Kulhawy (1978) attributed the large hysteresis on unloading
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to lateral stress rotation from the large lateral stresses
which remain in a soil when unloaded in K conditions.
Figures B.1 through B.3 depict K soil calibration tests
using Cornell Stress Cells with diaphragms only 0.0l15 inches
(0.38 mm) thick. The results are nonlinear for loading with
such thin diaphragms and cells with 0.025 inch (0.64 mm)
thick diaphragms were used for all subsequent soil calibra-
tion tests. These early test results are not included in
the compilatiou of data in Table 7.2.

For subsequent cycles of loading in the K, condition,

the registration value decreased for all but one lateral
stress measurement and for all ten vertical stress measure-
ments which had an initial registration greater than 0.90.
F‘ For the four vertical stress measurements with an initial

ii registration less than 7.83 the registration value increased
with subsequent loading cycles. This change in registration
Fl ~— could be from the reduction of placement effects with cyclic
loading as noted by Hadala (1967). The hysteresis in sub-

sequent loading cycles decreases algebraically for loading

E; and increases for unloading in the vertical stress measure-
E; ments. Lateral stress measurements in Ko conditions have a
Eg nearly constant hysteresis for subsequent loading cycles and
E‘ for unloading the hysteresis increases only slightly.

Calibration of Cornell Stress Cells in filter sand
under hydrostatic or isotropic stress conditions are shown

in Figures B.22 through B.33 and the results for the first

~—ywrryerey
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cycle of loading are summarized in Table 7.3. The regis-
tration values for lateral stress measurements for all
densities of sand are lower than the registration values for
vertical stress. The standard deviation of the lateral
stress measurements is also smaller for both loose and dense
sand indicating less variable measurements for lateral
stress. The hysteresis for loading is generally small but
the hysteresis for unloading is large for both vertical and
lateral stress measurements. This large hysteresis on
unloading in all densities of sand was not expected and
cannot be explained by using lateral stress rotation as in
the Ko conditions.

Considering both the Ko and isotropic soil calibra-
tions, the only ‘small hysteresis on unloading occurs for the
lateral stress measurement in Ko conditions. The hysteresis
may be a function of strain compatibility rather than from
only lateral stress rotation. Whenever there is strain in
the soil sample normal to the cell face, a hysteresis
averaging nearly twenty percent is present upon unloading.
Only for the special case of lateral stress measurement with
zero lateral strain is the hysteresis below twenty percent
and averages about five percent for all soil densities.

For subsequent loading cycles with increasing hydro-
static stress levels, the registration values generally
decrease for both vertical and horizontal stress measure-

ments. The hysteresis for the loading portion of each cycle
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decreased algebraically and for the unloading portion of
each cycle increased.

All soil calibration tests which were neither Ko nor
isotropic are labeled triaxial and are shown in Figures B.34
through B.51. For each triaxial soil calibration test, a
stress path (Lambe and Whitman, 1969) is included to show
the loading sequence on the sample. Most triaxial tests
were loaded isotropically and then the lateral stress held
constant while the vertical stress was varied. It was
possible in this way to fail the sample in triaxial exten-
sion. The results for the first cycle of loading for all
the triaxial soil calibration tests are summarized in Table
7.4. No triaxial tests on medium dense filter sand were
performed in this study. The registration values are closer
to 1.0 for lateral stress measurements than for the vertical
stress measurements. The standard deviation for the loose
filter sand is only three percent for both vertical and
horizontal stress measurements and over twenty percent for
the dense filter sand. The loading hysteresis is again
small but there is very large hysteresis upon unloading for
vertical stress measurements in dense sand. This is caused
by the failure of the soil in triaxial extension. As the
soil approaches failure, the soil near the stress cell fails
first from stresses concentrated there and transfers its
stress to adjacent nonyielding portions. This results in a

large increase in measured vertical stress at failure as can
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be seen in Figure B.35 which is a typical triaxial test
result. The stress cell measuring lateral stress in dense
sand does not seem to be adversely affected by the soil

failure and has an unloading hysteresis of less than three

percent.

7.4 DIRECT SHEAR AT CONSTANT VOLUME

The tendency of a granular material to change volume
during shear was discovered by Reynolds (1885) although he
attached no practical significance to his discovery. The
contribution of dilatancy to the frictional strength of a
soil was best explained by Rowe (1962) who broke the fric-
tional strength into three components: sliding friction,
rearragement of particles effect and the dilatancy effect.

The purpose of this investigation was not to separate the

frictional strength into its components but to determine the

effect of shear at constant volume on the resulting normal

stress. It was supposed that the high pullout resistance of

the shaft in dense sand (Stewart and Kulhawy, 1981) could be

caused by an increased normal stress from the dilatancy of
the soil.

Fifteen direct shear tests at constant volume were
performed for this study as described in Section 5.5. The
individual test results are reported in Appendix D and
summarized here.

Shear tests performed at constant volume in dense sand
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'ii require additional confining stress to prevent the positive
volume change associated with dilatancy. The additional
stress required to prevent dilatancy has two other effects
on the soil behavior as reported by Lee and Seed (1967).

The additional confining stress reduces the brittle char-
acteristics of the stress-strain curve and increases the

= strain to failure for the soil. A comparison of the results
" for a constant volume direct shear test with the results for
a direct shear test at constant normal stress clearly shows

these effects. Figure A.8 is a direct shear test performed

on a dense sample of filter sand, void ratio of 0.50, with a
peak friction angle of fifty two degrees, a residual fric-
tion angle of forty degrees and a shear displacement at
failure of 1.2 mm. A nearly identical sample of filter
sand, void ratio of 0.49, sheared at constant volume is
shown in Figure D.7. The peak friction angle for the test

at constant volume is fourty two degrees, the residual

friction angle is thirty eight degrees and the shear dis-
placement at failure is 6.0 mm.

k‘ As the sample of dense filter sand was sheared in the
direct shear test, it attempted to expand or dilate and an
5 additional load was applied to prevent its expansion. The
fi applied normal load was adjusted to keep the samnle at
constant volume and increased as the sample was sheared

- .tf. until failure occurred. The peak normal load at failure

%i divided by the corrected area of the sample is called the
k»—.
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critical normal stress and represents the normal stress
generated to shear the sample at constant volume. Figure
7.4 shows the variation in the critical normal stress with
the void ratio of the sample. The critical normal stress is
seen to be very dependent on the void ratio, particularly at
high densities. This behavior was reported by Seed and Lee
(1967) who found that the critical stress depended only on
the void ratio of the soil and was independent of the
initial applied stress. Three tests performed on filter
sand, void ratio of 0.52, with initial normal stresses of
2.42, 10.34 and 15.61 psi ( 16.9, 71.3 and 107.6 kN/mz) all
had a critical normal stress of 91 psi ( 627 kN/mz) as shown
in Figure 7.4. Seed and Lee (1967) report that the critical
normal stress in direct shear may be five to thirty percent
higher than the critical confining pressure in triaxial
tests performed at constant volume.

For a dense sample of filter sand to fail in direct
shear at constant volume the normal stress on the sample
must be increased to the critical normal stress. If the
sample of dense sand was sheared at constant volume the
normal stress on the failure surface would increase up to
the critical normal stress. This increased normal stress is
generated by the soil attempting to dilate against the
confinement of the direct shear box. Similar behavior could
be expected in the pullout tests of shafts in dense sand.

As the shaft is pulled from the soil, a failure surface
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develops in the soil along the rough shaft. As the dense
soil is sheared it attempts to expand against the confine-
ment of the dense sand around the shaft. Certainly some
expansion takes place around the shaft but only as the
lateral stress increases from the shearing dilatancy.

The increased normal stress on a shaft caused by the
dilatancy of the soil being sheared is very similar to the
behavior of rock socketed shafts. As the shaft is loaded,
the shear between the shaft and the rock creates dilation
which increases the lateral stress on the shaft. This
behavior has been documented by Williams (1980) who also
performed laboratory tests for direct shear at constant
normal stiffness by applying the normal load on the sample
with a heavy spring so that the normal stress varied with
dilation.

The increased lateral stress on the shaft caused by
dilation of the dense sand explains the high pullout resist-
ance of the shafts and the performance of the soil stress
cells installed to measure the lateral stresses. Stewart
and Kulhawy (1981) correctly assumed that the pullout
resistance of the shafts was directly proportional to the
normal stress on the shaft. However it was incorrectly
assumed that the lateral stress was a constant throughout
the pullout test. Stewart and Kulhawy back-calculated the
lateral stress on the shaft that existed at failure and

assumed that the same stress must have existed in the soil




4 Ry

B s .
‘:' . ol
' P

A

e
S ' .
SN IR

b o s
LT

ivv“
M PO

prior to testing. This is incorrect for dense sands prepar-
ed by vibration where the shear in the soil during testing
causes dilation and an increase in the lateral stress. The
lateral stress generated from the shaft pullout would not be
as large as the critical normal stress in the direct shear
tests because some volume change is likely to occur, but
could increase an order of magnitude or more over the
initial lateral stress. The significance of this increased
stress during shear had not generally been recognized as
noted from this quote from Lambe and Whitman (1969), "The
case of shear at constant volume is of little importance
when dealing with dry sand."

Stewart and Xulhawy (1981) justified the large in situ
lateral stresses as being from preloading of the soil during
soil placement. The placement technique for dense sand was
to compact in six inch (150 mm) lifts using a vibratory com-
pactor. Even though the sand was compacted, it was not
heavily preloaded as would be required for compaction of a
clay soil. The vibrator used applied only 10 psi (68.9
kN/mz) surcharge to the soil as it densified the lift.
Ingold (1980) has written an excellent article on the
lateral stresses created during the compaction of fill in
lifts and has shown how a nearly constant lateral stress
with depth is created. The results from Ingold's work and
the lateral stresses discussed by Stewart and Kulhawy (1981)

in their section on scale effects match extremely well.
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Using the insight gained from the constant volume
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direct shear tests on dense filter sand, the results for
Stewart and Kulhawy's shaft pullout tests in dense sand were
reevaluated. At first there seemed to be no consistency
from the stress cell output during the tests but a sign
error was discovered in the reported results. The stress
cell readings were switched from the manually operated Budd
boxes after the fill and construction phases of the test to
the data acquisition system, described in Section 5.4, for
the loading phase of the test. An increasing stress on the
soil stress cell that results in a positive increase on the
Budd box will give a decreasing output on the data acquisi-
tion system. Although the conversion between the Budd box
output in microstrain and the data acquisition system output
in microvolts per volt was handled correctly, the sign of
the output was not reversed for all dasa in the loading

phase of the tests reported by Stewart and Kulhawy (1981).

The corrected shaft pullout test results for the soil
stress cells in dense filter sand are included in Appendix

E. The corrected results for the loose and medium dense

RS MRSV

filter sand are not included because of the relatively small

variation in the stress cell output during the loading phase
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of the test. The corrected stress cell results show a spike
. in the radial stress measurements for those stress cells
2 nearest the shaft both for the casing pull during the con-
i struction phase and at failure in the loading phase. Both
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the tangential and vertical stress cells show a decrease in
the measured stress whenever the radial stress increases.
This behavior is now understood to be caused by the in-
creased lateral stress from dilation of the dense sand. The
vertical stress decreases because the shear against the
shaft is reducing the vertical stress near the shaft. The
tangential stress decreases because of the slight expansion
of the soil around the shaft caused by the increased radial
stress from dilation. The stress cells installed at a
distance of 15 to 20 inches (381 to 508 mm) display no
effects during either the construction phase or the loading
phase of the test which indicates the small zone of influ-
ence around the shaft for the dilation effects.

It was shown in Section 7.3 that the stress cells
measuring vertical stress did not respond correctly near
failure in triaxial extension. To check that a stress cell
measuring stress normal to a failure plane would respond
correctly, a stress cell was placed in the direct shear box
before running a constant volume direct shear test. The
cell consistently overregistered and at peak shear stress
the registration value was 1.09. Upon unloading there was a
positive hysteresis of twenty percent. Therefore the cell
responded well and its behavior was similar to that de-
scribed in Section 7.3 for K, soil calibration. The shear
failure surface less than one inch (25.4 mm) from the cell

face had no apparent adverse effects on the cell response.
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The conclusion to be drawn from these constant volume
direct shear test results is that the stress cells used in
the shaft pullout tests by Stewart and Kulhawy (1981) were
performing correctly, but the interpretation of their
performance was not well understood. The large differences
between the measured lateral stress prior to testing and the
stress determined from the load on the shaft at failure are
caused by the dilatancy of the dense filter sand. As the
shaft is loaded, the soil along its perimeter is sheared
and, as it attempts to expand, the lateral stresses are
increased. The failure load on the shaft is to be deter-
mined from the lateral stress caused by dilation and not
from the in situ lateral stress for soil deposits prepared
by vibration. The lateral stress from dilation of the soil
around the shaft would be a function of the initial void
ratio of the soil and its stiffness. The lenser and stiffer
the soil, the larger would be the lateral stress generated
during shear. The laboratory tests represent an upper bound
because the shaft test is not constant volume and the
stiffness of the soil in situ would be related to the
lateral stress prior to testing. For soil deposits prepared
by preloading, in which high lateral stresses can develop,
the dilatancy effect will still be present. However it may

not dominate as in dense sands prepared by vibration which

do not develop high lateral stresses in situ.
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' CHAPTER 8

GUIDELINES FOR MEASURING LATERAL STRESS WITH STRESS CELLS

Both general and specific conclusions can be drawn from
this investigation on the use of soil stress cells for
measuring lateral stress. The investigation included a
survey of previous lateral stress measurements with stress
cells and a three pronged approach to analyze the stress
cell behavior. The three approaches were: a theoretical
analysis of a stress cell-like inclusion in an infinite,
elastic, isotropic material, a finite element analysis of
stress cells and laboratory calibration under varying stress
conditions and soil densities.

The literature review has shown that stress cells in
soft clay perform well regardless of the orientation of the
cell. 1In sands the performance of stress cells had been
erratic except for stress measurements against retaining
structures. The best performance in any soil is obtained
when several measurements are averaged together to help
eliminate the random scatter from placement effects. There
is little confidence in the stress measured from a single
stress cell and repetitive measurements are essential.

The theoretical solution was obtained for the stress on
a rigid oblate spheroid in an infinite, elastic, homogeneous
and isotropic material, oriented as if the stress cell it

was representing was measuring lateral stress. The stress
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was found to vary with Poisson's ratio, lateral stress ratio

and the aspect ratio of the spheroid. Under conditions of
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zero lateral strain, Ko, the measured stress is insensitive

«
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to the aspect ratio of the inclusion. This means that the
design of a stress cell measuring lateral stress under Ko
conditions does not depend on the aspect ratio of the cell.
The theoretical solution also showed that there is no
error in the measured stress when Poisson's ratio of the
material is 0.5. This explains why the use of stress cells
in soft clays has given such good results. The difference
(“3 between the free field stress and the measured stress
increases with decreasing Poisson's ratio. For unloading

conditions in sands the tangent Poisson's ratio may become
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very small and give a large error as a result. This could
explain the large hysteresis seen in the soil calibration
tests in isotropic stress conditions for both vertical and

lateral stress measurements. As the Poisson's ratio of the

soil decreases upon unloading, the error in the stress
measured by the stress cell increases, thereby creating the
twenty percent hysteresis seen in the laboratory test. In
addition to the hysteresis seen in unloading from the low
values of tangent Poisson's ratio, there would be lateral

stress rotation effects for the KO conditions.

The effect of cross-anisotropic soil properties on
stress cell performance was investigated using the finite

element method. Stress cells oriented to measure vertical
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stress were nearly unaffected by changes in the cross-
anisotropy ratio from 0.5 to 2.0. The response of a stress
cell measuring lateral stress increases as the cross-
anisotropy ratio increases. This change is small however
compared to the effect of Poisson's ratio on the response of
a stress cell measuring lateral stress. If the cross-
anisotropy ratio increases from 0.5 for loose sands to 1.0
for dense sands (Ladd, et al., 1977) the lateral stress cell
response would increase about five percent of the applied
vertical stress. This was not observed in the soil cali-
bration tests. So although the cross-anisotropy ratio does
affect the response of a stress cell measuring lateral
stress, the effect is small compared to that for Poisson's
ratio or placement effects.

The effects of placement on the response of stress
cells can be reduced by careful and simple placement pro-
cedures. Using identical methods in both the soil calibra-
tion tests and in the applications will ensure minimum
exrrors. The placement of stress cells oriented to measure
lateral stress is more difficult than for stress cells
placed to measure vertical stress. This increased diffi-
culty could account for some of the variation in the stress
cell response. The random placement errors can be reduced
by averaging the results from several stress cells measuring
the same stress field.

The lateral stress ratio, K, was found to have a large
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influence on the response of a stress cell measuring verti-
cal stress. TFor the stress cell measuring lateral stress,
the response is directly proportional to the lateral stress
ratio. As the lateral stress increases so does the response
of the stress cell measuring lateral stress and no correc-
tion is needed for the ratio of lateral to vertical stress.
Poisson's ratio of the soil has the largest effect of
any parameter on the response of stress cells measuring
lateral stress. Poisson's ratio for the vertical plane has
a much greater influence on the response than the Poisson's
ratio in the horizontal plane. Interpreting the results of
soil stress cells would be quite easy if the Poisson's ratio

of the soil was known. But the value of Poisson's ratio

varies with stress level and strain conditions so that it is

rarely known with any degree of certainty.

The soil calibration of the stress cells in the labora-
tory has shown that stress cells measuring lateral stresses
[; perform as well or better than cells measuring vertical

- stress in the same test. Although the registration value

WC and the hysteresis on unloading between cells oriented
differently may be different, there is no evidence that
stress cells measuring lateral stresses do not perform
¢ satisfactorily. The difference in performance is justifi-

cation for proper soil calibration in the same soil and

..

e
LT

o under the same stress conditions expected in an application

prior to the interpretation of the results.
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Stress cells measuring vertical stress were found to
grossly overregister when the soil failed in triaxial
extension. No erratic performance was observed for stress
cells measuring lateral stresses in the same triaxial
extension tests. Stress cells measuring stress normal to
the failure plane in direct shear also performed satis-
factorily during shear failure. Therefore, 1f a stress cell
is to be used in a situation in which the soil might ap-
proach the failure stress, then prior soil calibration is
required to ensure adequate performance.

A cell that is designed for vertical stress measure-
ments is quite adequate for lateral stress measurements and
no design modifications are suggested. The performance of
the stress cell will change with the orientation of the cell
and soil calibration tests at various orientations are
essential for proper interpretation of the results.

In conclusion, the recommendations for the design,
calibration and use of stress cells to measure lateral
stresses in soil are:

1. A stress cell designed for measuring vertical

stresses is completely satisfactory for measuring

lateral stresses, and no special design considerations
are necessary.

2. The theoretical solution for a rigid ellipsoidal

inclusion in an infinite, elastic, homogeneous and

isotropic material is a good representation of the
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behavior of a disc-like soil stress cell and may be

used to predict stress cell performance.

3. The registration values and performance of stress
cells will vary with the cell orientation and soil
calibration of the stress cells must include cells at
the same orientation intended in the application. There
is no evidence that lateral stress measurements can not
be as accurate as vertical stress measurements.

4. Soil calibration of stress cells is essential for
proper interpretation of stress cell results. Any
attempt to use stress cells without prior soil cali-
bration is destined for failure.

5. Placement effects can be reduced by using simple
placement techniques and redundant stress cells. The
confidence of the stress cell results should increase
with the number of stress cells used in the testing
program. The results of a single stress cell reading
should not be used as the sole indication of soil
stress.

6. Under some soil failure conditions, the stress
cells continue to perform satisfactorily. Only proper
soil calibration tests can confirm whether the cells

will continue to perform near soil failure conditionms.
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B CHAPTER 9

SUMMARY AND CONCLUSIONS

The theoretical solution for a rigid elipsoid is a good
representation for a disc-like stress cell. The solution
can be expressed to model a stress cell measuring either
vertical or horizontal stress.

The equipment and procedures used for calibrating
stress cells in air and soil were quite satisfactory and are
recommended for future testing and calibration. The K, belt
in the large triaxial soil calibration chamber allowed the
determination of the lateral stress ratio for conditions of
zero lLateral strain and at the same time helped to reduce
sidewall friction between the sample and the chamber.

The time effect of the Cornell Stress Cell was caused
by the reinforcement of the thin diaphragm from the plastic
waterproofing which had been applied to the cells. The time
effect from this reinforcement was aggravated by the lead
wires which were secured to the diaphragm by too generous an
application of the waterproofing. The time effect was
eliminated by removing the polyurethane coating and replac-
ing it with a single thin coat of silicone waterproofing.

The lateral stress ratio for conditions of zero lateral
strain was measured using a K, belt on an eleven inch (279
mm) diameter sample. The K, value was found to decrease

with increasing density or friction angle. At low densities
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where the samples were prepared by pluviation through small
heights, the'Ko values were consistently lower than the
theoretical solutions. This could be from the loose struc-
ture of the sand which inhibits lateral stress transfer
during loading. The retention of the lateral stress during
unloading was found to be larger for dense samples than for
the loose pluviated ones. The alpha values for dense
samples were near 0.7 while the loose samples had alpha
values near 0.3. Again the question of sample preparation
and soil structure must be raised to explain these differ-
ences.

The stress cell results for lateral stress measurements
from the shaft pullout tests in dense sand performed by
Stewart and Kulhawy (198l) are consistent with the increased
lateral stress created during shear. As the shaft is loaded
to failure, the dense sand along the failure surface at-
tempts to dilate. Since the soil is confined laterally by
the presence of more dense, stiff soil, the dilation is
restricted and large lateral stresses may be generated. The
stress cells nearest the shaft indicated this large increase
in lateral stress during shear for both the casing pull and
the shaft pullout tests. The pullout load on the shaft is
then a function of the peak lateral stress from dilation
effects and not from the in situ lateral stress prior to
testing, at least for soil deposits prepared by vibration.

The peak lateral stress is a function of the initial void
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ratio and the stiffness of the soil, which in turn are
dependent on the initial lateral stress. The implication
here is that vibratory densification of sands does not
create very high lateral stresses in situ, as previously
thought.

Lateral stresses in cohesionless soil can be measured
using soil stress cells. The behavior of the stress cell in
soil is affected by the orientation of the cell and proper
soil calibration tests are essential. The soil calibration
of the stress cells must use the same soil, the same stress

conditions and the same cell orientation to obtain correct

results.
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APPENDIX A

a“: PHYSICAL PROPERTIES OF FILTER SAND

The cohesionless material used for all soil tests in
this study is a processed uniform sand commercially avail-
able for use in swimming pool filters, hence the name filter
sand. The oven dried sand was purchased in eight pound bags
2 from W. F. Saunders & Son, Box 308, Nedrow, New York. This
Ll is the same material used by Weiler and Kulhawy (1978) and

by Stewart and Kulhawy (1981) whose test results for the

filter sand are summarized here.

The grain size distribution is shown in Figure A.1l for
five different analyses by four different technicians. The
differences in grain size are attributed to the segregation
of particles that occurs when the sand is poured into a
conical pile. Because the coarse fraction rolls further, it

is concentrated along the perimeter of the pile. Figure A.2

shows the grain size distribution for the filter sand used
for fifteen different soil calibration tests between 15
September 1981 and 26 March 1982. The degradation of the
particle size because of handling and repeated loading is
insignificant and the grain size may be considered to be

b

E} constant throughout the testing period.

- 3

F The minimum unit weight is 98.8 pcf (15.5 kN/m ) and

‘ the maximum dry unit weight is 116.7 pcf (18.3 kN/m3) as

a ' performed by Stewart in accordance with ASTM D-2049-69. The
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- 65 is shown in Table A.l.

172
&3 specific gravity of solids is 2.74. A petrographic analysis
)
:. > as performed by Nelson (1980) in accordance with ASTM C-295-
LRI
SR

-
b

v

g et

The compaction curve for filter sand using the Standard
Proctor compaction test is shown in Figure A.3. The optimum

water content appears to be ten percent, where the peak

B e

occurs in the dry unit weight. However, a higher unit
weight is possible for the air dried sand. All compaction
done in this study was done on air dried sand.
The shear tests on filter sand are summarized in Figure
f%é A.4. The variation in friction angle with unit weight is

thought to be caused by the variation in the coarse fraction

T VY R T
B § N
oL, w’ ot

(Stewart and Kulhawy, 1981). The direct shear tests by

Trautmann (1982) were done with a hard maple frame replacing
the heavy brass frame for the upper part of the shear box to
reduce the effective normal stress. Figures A.5 through

A.13 are the results of the direct shear tests done for this

study and are summarized in Table A.2. The normal load was
held constant and the normal stress was calculated using the
# corrected area which explains the linear increase in the

normal stress with shear displacement. The tests were

performed for two different height samples compacted for

bk A L ich e
i v

variation in the initial void ratio as shown on each figure.
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Count % of Total
Single Crystal Grains

Calcite 1 0.4
Quartz 55 20.1
Feldspar 6 2.2

Polycrystalline Grains

Lithic Fragments

Quartzite 34 12.4

Limestone 105 38.3

- Dolostone 5 1.8
PP Siltstone/Fine

A4 Sandstone 56 20.4

Igneous 4 1.5

Shale 4 1.5

Fecal Pellets 3 1.1

Opaque Mineral 2 0.7

Trace Mineral 2 0.7

L 274 r 100 %

Table A.1 Petrographic Analysis of Filter Sand
(Nelson, 1980).
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = @.77
INITIAL HEIGHT = S58.75 MM
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Figure A.5 Direct Shear Test on Filter Sand
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DIRECT SHEAR TEST ON FILTER
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Figure A.12 Direct Shear Test on Filter Sand.
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4%% SOIL CALIBRATION OF CORNELL STRESS CELLS
%{ The calibration of stress cells in the same soil and
ii under the same stress conditions expected for their appli-
cation is essential to obtain accurate measurements. The
-g results from all the soil calibrations performed for this

study are included here. Figures B.l through B.3 are Ko
soil calibrations using thin, 0.015 inch (C.38 mm), dia-
phragm cells. Figures B.4 through B.21 are K soil calibra-
tions using the thicker, 0.025 inch (0.64 mm), diaphragm
cells which were used for all remaining soil calibrations.

Figures B.22 through B.33 are soil calibrations for isotrop-

ic stress conditions. Figures B.34 through B.51 are for
= triaxial soil calibrations including the stress path applied

S for each test.

- The soil calibrations generally include the results

from a cell measuring vertical stress and a second cell in

the same test measuring the lateral stress. The results are

,

;; plotted with the measured stress versus the applied stress
3 for both cells through several cycles of loading for most
&f tests. The overburden or weight of soil above the stress
.‘ cell was included with the applied vertical stress for
accuracy. The slope of the loading por:ion of the calibra-

tion line was determined from a least squares linear regres-

sion program using all the loading data points for each

186
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cycle. The registration is listed for each cycle of loading

as the registration value, R, below each plot. In nearly

every test the measured stress during the unloading phase
was higher than during the loading phase. This is referred
to as a positive hysteresis in the load-unload cycle. The
results from these calibration tests are summarized in

Tables B.l through B.3 and discussed in Section 7.3.
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STRESS PATH FOR TRIAXIAL TEST
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Figure B.34 Triaxial Stress Path.
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Figure B.38 Triaxial Stress Path.
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STRESS PATH FOR TRIAXIAL TEST
INITIAL VOID RATIO = @.548
1 APR 1882

10 .

-
-l

o S 10 15 20

1
P = 2(U'V-O-[J'H) PSI1

1 PSI = 6.9 kN/M2

Figure B.42 Triaxial Stress Path.
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STRESS PATH FOR TRIAXIAL TEST
INITIAL VOID RATIO = @.712
2 APR 1882

15

18 |

PSI
u

(UV-U“)
Q
.'

9= 3
1
n

" S 10 15 20 25 302

1
P = 5(0V+Uh) PSI

1 PSI = 6.9 kN/M2

Figure B.44 Triaxial Stress Path.
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STRESS PATH FOR TRIAXIAL TEST
N INITIAL VOID RATIO = 8.524
(- “ 18 APR 1982

15 |

10 4

i
A

2
=
x
=
o

-
-

-10 -

-15 1
%] S 10 1S 28 25 38

1
P = ZCUV*Oh) PSI

1 PSI = 6.9 kN/M2

Figure B.46 Triaxial Stress Path.
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STRESS PATH FOR TRIAXIAL TEST
- INITIAL VOID RATIO = 0. 458
[ PN S5 MAY 1982

PSI

9= 30,0

2 S 10 15 20

1
P = 2(U'V+U'H) PSI

1 PSI = 6.9 kN/M2

T VST YT T
-

Figure B.48 Triaxial Stress Path.
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STRESS PATH FOR TRIAXIAL TEST

- INITIAL VOID RATIO = @. 459
Y - 7 MAY 1982
15 _
[ ]
wn
a.
?I ' : 4
b>
v/
I
[}
-
-15 |
! 2 5 10 15 20 25 30

1
P = 2(0V+Uh) PSI

1 PSI = 6.9 kN/M2

Figure B.50 Triaxial Stress Path.
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APPENDIX C

Ko TESTING OF FILTER SAND

Figures C.1 through C.17 show the coefficient of
horizontal soil stress, K for filter sand as determined by
the use of the K, belt in the soil calibration chamber. The
tests were performed as described in Section 5.3. The
lateral air pressure was applied independently of the
vertical air pressure as necessary to maintain a condition
of zero lateral strain on the eleven inch (27.9 mm) diameter
sample. The strain was measured by maintaining a constant
output from the gages on the thin stainless steel belt
around the sample. MNone of the results in this appendix
were obtained from stress cell readings. These K, measure-
ments were made as an independent check on the lateral
stress for the Ko condition. The alternative to these
independent stress measurements was to use one of many
available empirical formulas for KO to estimate the lateral
stress.

The following figures show the K, values for loading
and unloading cycles for different ranges of applied verti-
cal stress and for different initial void ratios of the
filter sand. The unloading results from ecach K, test are
replotted as the log KO versus the log of the overconsoli-
dation ratio, OCR. The slope of this log-lug plot is nearly

a constant for each test and is replotted as the alpha, o
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value on each figure. The Ko value at an overconsolidation
ratio of 1.0 was determined by dividing the lateral stress
necessary to balance the Ko belt by the peak vertical stress
for each cycle of loading. Although the tangent K values
upon initial loading were usually a constant over a wide
range of stress levels, only the value at peak stress was
reported on each figure. The alpha values were determined
using a least squares linear regression program on the data,
not including those data points which showed a decrease in
KO at low vertical stress levels where the soil may have

failed upon unloading.
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Figure Initial Cycle  Maximum K, a
_ No. Void lo. Vertical
- Ratio Stress
n GACK (psi)
c.1 0.735(P) 1 12 0.32 0.48
2 13 0.29 0.42
C.2 0.692(P) 1 31 0.28 0.64
2 30 0.27 0.69
c.3 0.528(C) 1 33 0.17 0.75
C.4 0.678(P) 1 21 0.26 0.45
2 30 0.27 0.42
3 31 0.26 0.43
C.5 0.735(P) 1 11 0.23 0.31
2 21 0.25 0.36
3 31 0.26 0.40
4 70 0.28 0.41
C.6 0.678(S) 5 16 0.23 0.38
6 30 0.24 0.38
C.7 0.548(C) 1 11 0.21 0.72
2 20 0.17 0.74
3 30 0.16 0.72
4 11 0.23 0.67
C.8 0.668(P) 1 11 0.22 0.44
2 11 0.22 0.45
3 21 0.24 0.44
~ 4 32 0.26 0.44
- C.9 0.530(V) 1 11 0.33 0.81
- 2 20 0.30 0.66
o 3 32 0.29 0.63
hg
o c.10 0.722(P) 1 11 0.36 0.30
: c.11 0.736(P) 1 11 0.42 0.31
2 21 0. 44 0.34
3 31 0.42 0.33
c.12 0.624(V) 1 11 0.51 0.70
2 21 0.52 0.72
3 31 0.56 0.72

Table C.1 Summary of Ko Tests on Filter Sand.
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Initial Cycle
Void No.
Ratio

Maximum
Vertical
Stress
(psi)

CENOR AN ORI SN U ACE "Iy e i o te T ot Bt B b BT
R R A AT RN ANE AP S AN AN

o A .L.-‘_A'k;':tf-.:q

C.13

0.548(V)

0.765(P)

0.524(V)

0.474(C)

0.459(C)

(SN W N = W W N = W N =

11
21
31

11
20
30

11
21
31

10
20
30

10
20
30

QOO OO0 OO0 OOOo oOOO

.27

.23
.26
.38
.42
.23
.22
.38
.30
.30

.28
.30
.28
.27
.76
.54
.55
.75
.57

.63

[eXoR o] OO OO O oo oo o]

.60

Table C.1

Placement Method
Pluviation
Compaction
Static
Vibration

<unow

Cont.

Summary of KO Tests on Filter Sand.
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APPENDIX D

CONSTANT VOLUME DIRECT SHEAR TESTS

Figures D.1 through D.1l5 show the results of direct
shear tests run at constant volume as described in Section
5.5. The normal force on the soil was varied during shear
to maintain a constant height and therefore a constant
volume sample. The normal stress was calculated by using a
corrected area throughout the test. Figures D.l1 through D.7
are for a two inch (50.75 mm) high sample and Figures D.8
through D.15 are for a 1.3 inch (33.02 mm) high sample. The
purpose for running tests with different thicknesses was to
determine if the thickness had a direct influence on the
required shear force at failure. The test results are

summarized in Table D.1.
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = 8. 61
INITIAL HEIGHT = S@.75 MM
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Figure D.1 Constant Volume Direct Shear Test.
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = @.57
INITIAL HEIGHT = 38.75 MM
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Figure D.2 Constant Volume Tirect Shear Test.

L - o T e T e P P P U T SR S SN YD ST JUNY WP SUNIE YUY SP . . ¥




DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = @.55
INITIAL HEIGHT = 58.75 MM
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Figure D.3 Constant Volume Tirect Shear Test.




DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = @.54
INITIAL HEIGHT = 58.75 MM
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Figure ™. 4 Constant Volume NPirect Shear Test.
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = B.53
INITIAL HEIGHT = 58.75 MM
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = @,52
INITIAL HEIGHT = 58.75 MM
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Figure D.6 Constant Volume Direct Shear Test.
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= DIRECT SHEAR TEST ON FILTER SAND

- INITIAL VOID RATIO = @. 49

0 INITIAL HEIGHT = 58,75 MM
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Figure D.7 Constant Volume Direct Shear Test.
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = @.61
INITIAL HEIGHT = 33.82 MM
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = 0. 60
INITIAL HEIGHT = 33.082 MM
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Figure D.9 Constant Volume Direct Shear Test.
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = B.55
INITIAL HEIGHT = 33.82 MM
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Figure D.10 Constant Volume Direct Shear Test.
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ﬁ? DIRECT SHEAR TEST ON FILTER SAND
; INITIAL VOID RATIO = @.52
INITIAL HEIGHT = 33.082 MM

NORMAL
”~
O=q
w
8
wn
W
w
x
» +0.8
;+0.4
L B
*b
g Jh-a.4
5 L
O 455
| )
[+ 4
" 4 S8
&
E 4 45
- uj d 40
i
o =] 4 35
8 o (SECANT) | 3g
e W a.s — + ' +— -
% o 2 2 4 6 8 18 12
;"}. SHEAR DISPLACEMENT (MM)
e Figure D.1ll1 Constant Volume Direct Shear Test.

A Ao N T T 30 L I O LT A AT ) RN SRR A PR RN AL AN S IARIACIAR ISR LSRRI ALY,

HEIGHT CHANGE (MM)

ANGLE OF FRICTION

A e 4 e nan e aatatatatataloatadet




25 .

28 1

STRESS (PSD

10

1.5

1.8

@8.5

15 |

— s T — Ty WP T AT TR TN T
N A NI NI TIRINI AN S PN AN MO O A AR S EAOACSRNICIIC NE AT L2 200 SRR -
.

280

DIRECT SHEAR TEST ON FILTER SAND

INITIAL VOID RATIO = @.61
INITIAL HEIGHT = 33.82 MM
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Figure D.12 Constant Volume Lirect Shear Test.
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DIRECT SHEAR TEST ON FILTER SAND
INITIAL VOID RATIO = @.586
INITIAL HEIGHT = 33.82 MM
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Figure D.13 Constant Volume Direct Shear Test.
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INITIAL VOID RATIO = @.53
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APPENDIX E

INTERPRETATION OF PULLOUT TESTS

Figures E.l through E.20 show the response of the
Cornell Stress Cells during the drilled shaft pullout tests
in dense filter sand as performed by Stewart and Kulhawy
(1981). The sign of the output change during the loading
phase of each test has been reversed to show the actual
stress cell response. The change in response during pullout
of the shaft in the loose and medium dense tests is so small
as to be neglected. Only the dense tests described in Table
E.1l which were instrumented and recorded are included. Each
figure is broken into three phases: Fill, Construction and
Loading. The Fill phase is the placement and compaction of
the filter sand in six inch lifts. The Construction phase
is the casing load test, concreting, removal of the casing
and concrete curing. No scale for the Construction phase
was given. The Loading phase is the pullout of the shaft in
equal increments between loads as recorded in Table J.8
through Table J.10 of Stewart and Kulhawy (1981). 1In test
number 12, Figures E.15 to E.20, no shaft pullout was

performed but the casing results are included.
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Test No. Figure No.

Shaft Size

d (in)

L (ft)

Initial
Void Ratio

10
11
12

E.1-E.6 6
E.7-E.10 6
E.11-E.14 12
E.15-E.20 6

0.475
0.478
0.484
0.487

-----------------

Table E.1
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el
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diameter
Length

in = 25.4 mm
t = 304.8 mm

(Stewart and Kulhawy,

Description of Shaft Pullout Tests

1981) .
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APPENDIX F

MEASUREMENT OF THE VARIATION IN UNIT WEIGHT BY FREEZING

If there is a measurable variation in unit weight of
the soil near a stress cell, the effects of pocket action
could be evaluated. Should the soil surrounding the stress
cell, immediately over the diaphragm, have a lower unit
weight than the rest of the soil mass then the cell should
underregister. If the soil immediately around the stress
cell had a higher unit weight, then the cell should over-
register. Although there is no reason to believe that there
should be a significant variation in unit weight of the soil
around a stress cell in samples prepared by pluviation or
vibration, a variation might exist because of compaction of
the soil in lifts. The effects of the stress cell on the
unit weight of soil placed by any of these techniques is
unknown.

In an effort to measure the variation in unit weight of
sand around the stress cell, a partially saturated sample
was frozen and dissected. The sampling of cohesionless soil
by {reezing is a relatively new method and is not fully
developed. Walberg (1978) reports on his tests on sand that
"No significant effect from freezing on . . . specimen
density . . . could be established for the sands tested."
Marcuson and Franklin (1979), Mitchell, Guzikowski and
Villet (1978) and Yoshini, Hatamaka and Hiroshi (1978) all
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report success with sampling and testing of cohesionless

> soils by freezing.

¥ An air dried sample was prepared in a six inch diame-

ter, eight inch high (152.4 by 203.2 mm) California Bearing
Ratio mold by compaction in lifts very similar to the method
used in the soil calibration tests of the stress cell. The
unit weight of the dry sample was determined by weighing the
mold before and after filling with soil and dividing by the
mold volume. This gross unit weight was used as the overall
average for comparison with other unit weight measurements.

Qi?i The sample was saturated by placing the mold slowly in a tub
of Qater and allowing the water to saturate the sample
through the bottom porous stone until the top of the sample
appeared wet. The sample was then removed from the water,
covered loosely and allowed to drain vertically for twenty

Ei four hours. The sample was frozen by placing it in a

*. hned freezer at -10°C. No measurable deformation occurred at the

surface of the sample because of freezing. Saturated

samples may be frozen without affecting the density or

E’ structure of the soil if they are frozen in one direction
& only or frozen quickly enough to prevent formation of ice
t lenses (Mitchell, Guzikowski and Villet, 1978). No ice
f? lenses were discovered in any of the samples prepared for
QV this study.

The frozen soil was removed from the steel mold by

running water over the mold to thaw quickly a thin layer of

B WP YDRP PRy AU, Pl G Wiy Wil P Wl G DU L TP WP DU S I
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soil nearest the mold. The cylinder of frozen soil was then
removed from the mold and brushed lightly to remove any

IRA loose soil and returned to the freezer. When the sample was
again chilled, it was sliced into discs approximately one

half inch (12.5 mm) thick on a band saw. The frozen sample

was handled only with gloved hands to reduce thawing from
body heat and was returned to the freezer between each step
to keep it frozen. The thin discs of frozen soil were
either broken by hand or cut on the band saw into smaller
pieces. Neither the ends of the cylindrical sample or the

outermost edges of any disc were used for the unit weight

'vj*;j

measurements. The volume of each small piece was determined
by a method similar to that recommmended for the shrinkage
limit test by Lambe (1951). The frozen piece of soil was
submerged into a full bowl of mercury, chilled to -10°¢C to

prevent the sample from thawing. The displaced mercury was

- collected in a second bowl and weighed to determine the

b ~
b -
P'.
o
.
-
S
L -
b.
-
b
L'

volume. The still frozen piece of soil was removed from the

mercury and placed into a tare for oven drying. The dry

T

weight of the soil divided by the volume of displaced

rv-

-7 mercury gave the dry unit weight of the soil.

NS It was hoped that this procedure would allow any

T variation in the soil unit weight around the stress cell to
by~

be measured. However there was a large systematic error and

an unacceptably large random error in the unit weight

T Xy

measurements as shown in Table F.1. The large systematic
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TEST # 1 2 3

p Gross Unit Weight (pcf) 113.2 119.1 115.0
- Number of Measurements 21 21 20
= Average Unit Weight (pcf) 102.0 103.6 102.5
E @ Minimum Unit Weight (pcf) 92.0 95.3 93.6
= Maximum Unit Weight (pcf) 107.5 108.0 108.1
g Standard Deviation (pcf) 4.1 2.3 2.6
» 3

- Note: 1 pcf = 16.01 kg/m

b
o~

3

E

o Table F.1 Unit Weight of Filter Sand Determined
F’Q From Frozen Samples.
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error is shown by the difference between the gross unit
ji weight and the average unit weight. This systematic error
s is believed to be caused by disturbance of the dense sand

, along the saw cuts. The sample preparation resulted in a

thawing and loosening of the sand grains nearest the saw

cut. With small samples necessary to measure the unit

- weight variations across a 1.75 inch (44.5 mm) diameter

stress cell, the specific surface increases with decreasing

sample size and a large systematic error is produced. A

0" much smaller error would be produced on larger samples or on

(ﬁ? finer grained soil, neither of which was possible for this
application on filter sand. The sample preparation could

lE: also be improved by using a diamond cutting saw and using

the saw in a walk-in freezer maintained at -5°C as recom-

mended by Baker (1976).

The random error could be from the variation in sample

'~ size, 2500 to 8500 mm>

, and therefore variation in the
specific surface as mentioned earlier or from differences in
thawing effects between individual pieces, sample prep-

aration technique, or actual variation of the unit weight of

the soil. Since the factors could not be sorted out and the

g random error was quite large as shown in Table F.l, the

i measurement of the variation in unit weight around a stress

| cell was considered unsatisfactory. Improved sample prep-
aration technicues and facilities could significantly

¢ improve the results of unit weight determination by freezing

and could be a suitable topic for further research.







